1,115 research outputs found

    Normal hypergraphs and the perfect graph conjecture

    Get PDF
    AbstractA hypergraph is called normal if the chromatic index of any partial hypergraph H′ of it coincides with the maximum valency in H′. It is proved that a hypergraph is normal iff the maximum number of disjoint hyperedges coincides with the minimum number of vertices representing the hyperedges in each partial hypergraph of it. This theorem implies the following conjecture of Berge: The complement of a perfect graph is perfect. A new proof is given for a related theorem of Berge and Las Vergnas. Finally, the results are applied on a problem of integer valued linear programming, slightly sharpening some results of Fulkerson

    Convergence Rate of Riemannian Hamiltonian Monte Carlo and Faster Polytope Volume Computation

    Full text link
    We give the first rigorous proof of the convergence of Riemannian Hamiltonian Monte Carlo, a general (and practical) method for sampling Gibbs distributions. Our analysis shows that the rate of convergence is bounded in terms of natural smoothness parameters of an associated Riemannian manifold. We then apply the method with the manifold defined by the log barrier function to the problems of (1) uniformly sampling a polytope and (2) computing its volume, the latter by extending Gaussian cooling to the manifold setting. In both cases, the total number of steps needed is O^{*}(mn^{\frac{2}{3}}), improving the state of the art. A key ingredient of our analysis is a proof of an analog of the KLS conjecture for Gibbs distributions over manifolds

    Non-degenerate colorings in the Brook's Theorem

    Full text link
    Let c≥2c\geq 2 and p≥cp\geq c be two integers. We will call a proper coloring of the graph GG a \textit{(c,p)(c,p)-nondegenerate}, if for any vertex of GG with degree at least pp there are at least cc vertices of different colors adjacent to it. In our work we prove the following result, which generalizes Brook's Theorem. Let D≥3D\geq 3 and GG be a graph without cliques on D+1D+1 vertices and the degree of any vertex in this graph is not greater than DD. Then for every integer c≥2c\geq 2 there is a proper (c,p)(c,p)-nondegenerate vertex DD-coloring of GG, where p=(c3+8c2+19c+6)(c+1).p=(c^3+8c^2+19c+6)(c+1). During the primary proof, some interesting corollaries are derived.Comment: 18 pages, 10 figure

    Community detection in multiplex networks using locally adaptive random walks

    Full text link
    Multiplex networks, a special type of multilayer networks, are increasingly applied in many domains ranging from social media analytics to biology. A common task in these applications concerns the detection of community structures. Many existing algorithms for community detection in multiplexes attempt to detect communities which are shared by all layers. In this article we propose a community detection algorithm, LART (Locally Adaptive Random Transitions), for the detection of communities that are shared by either some or all the layers in the multiplex. The algorithm is based on a random walk on the multiplex, and the transition probabilities defining the random walk are allowed to depend on the local topological similarity between layers at any given node so as to facilitate the exploration of communities across layers. Based on this random walk, a node dissimilarity measure is derived and nodes are clustered based on this distance in a hierarchical fashion. We present experimental results using networks simulated under various scenarios to showcase the performance of LART in comparison to related community detection algorithms

    Finitely forcible graphons

    Get PDF
    AbstractWe investigate families of graphs and graphons (graph limits) that are determined by a finite number of prescribed subgraph densities. Our main focus is the case when the family contains only one element, i.e., a unique structure is forced by finitely many subgraph densities. Generalizing results of Turán, Erdős–Simonovits and Chung–Graham–Wilson, we construct numerous finitely forcible graphons. Most of these fall into two categories: one type has an algebraic structure and the other type has an iterated (fractal-like) structure. We also give some necessary conditions for forcibility, which imply that finitely forcible graphons are “rare”, and exhibit simple and explicit non-forcible graphons

    Quasirandom Load Balancing

    Full text link
    We propose a simple distributed algorithm for balancing indivisible tokens on graphs. The algorithm is completely deterministic, though it tries to imitate (and enhance) a random algorithm by keeping the accumulated rounding errors as small as possible. Our new algorithm surprisingly closely approximates the idealized process (where the tokens are divisible) on important network topologies. On d-dimensional torus graphs with n nodes it deviates from the idealized process only by an additive constant. In contrast to that, the randomized rounding approach of Friedrich and Sauerwald (2009) can deviate up to Omega(polylog(n)) and the deterministic algorithm of Rabani, Sinclair and Wanka (1998) has a deviation of Omega(n^{1/d}). This makes our quasirandom algorithm the first known algorithm for this setting which is optimal both in time and achieved smoothness. We further show that also on the hypercube our algorithm has a smaller deviation from the idealized process than the previous algorithms.Comment: 25 page

    Quasirandom permutations are characterized by 4-point densities

    Get PDF
    For permutations π and τ of lengths |π|≤|τ| , let t(π,τ) be the probability that the restriction of τ to a random |π| -point set is (order) isomorphic to π . We show that every sequence {τj} of permutations such that |τj|→∞ and t(π,τj)→1/4! for every 4-point permutation π is quasirandom (that is, t(π,τj)→1/|π|! for every π ). This answers a question posed by Graham
    • …
    corecore