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NORMAL HYPERGRAPHS AND THE 
PERFECT GRAPH CONJECTURE 

Rccciv& 17 Ncvembet 197 1 * 

Abrtmt. A hypergraph is called normai if the chromatic index of any partial hypergraph H’ nf 
tt coinci&s with the mWmum vaIency tn H’, it is proved thax a hypergtaph is normal iff the 
maimurn nuntrtr of disjesint hyperedges coincides with the minimum number of vertices re- 
prrtsenting the hypered_ges in each partid hypergraph af it. This thtxlrem implies thc.:;OUowing 
ca)njec+ture of Rers: ‘I& ccxnplemcnt 13f a perfect graph is perfect. A new prmf is given for a 
related theorem x,f Blerge and 1.~ Vergnas. Finally, the results arc applied on a problem of 
mteger valued Utjecar prx?gransming, shghtly Sharpening s~rne results of Fulkerson. 

5 0. lntmduction 

Let G be a finite graph and fet x(C) and W(G) denote Its chrumatic 
number and the maximum number of vctticeq forming a cliqc : in CT, 
respw tiwly . Obvioudy 9 

There are severd ckisscs of graphs such that 

e.g., bipartite graphs, their line graphs and complements, interval graphs, 
transitively orientable graphs, etc. Obviously, relation (2) does not say 
too much about the structure of G; e.g. adding 3 sufficiently large clique 
to an arbitrary graph, the arising graph satisfies ( 1). 

Berge [ I,?] has introduced the following concept: a graph isptjrfcct 
(y-perfect) if the equality holds in (2) for every induced subgraph df it. 
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The rncntianed special CIasW of graphs have this property, since every 
induced s&graph of them belongs to that same cfass. We formulated 
two canjectur6 in ilannec$iotl wit% this nutiart: 
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In 53, we give a new proofofa related theorem of Berge, Finally. in 
$4 we give some formulations of the results in terms of linear program- 
ming. Most of them have been observed PO be equivalent with the per- 
fect graph theorem already by FuUcerson.. d 

Let G, W be two vertex-disjoint graphs and let s be a vertex of C. By 
substituting H for x we mean dekting x and joining every vertex of W to 
those vertices of G which have been adjacent with x. 

hof. We may assume that only one perfect graph N is substituted for 
;a vertex _Y of a perfect graph <I’. Let G’ be the resulting graph. It is 
enough to show that 

since for the illduccd subgraphs of G’. which arise by the same constru.c- 
tion from perfect graphs, this follows similar!y. 

We use induct ion on k = oG’). For k = \ the statement is obvious. 
Assume k > 1. It is cnaugh to find a stable set T of G’ meeting all k- 

element cliques, since then coloring these vertices by the same color and 
the remaining vertices by k --- 1 other colors (which can be done by the 
induction hypothesis). we obtain a k-coloring of G’. 

Put nl = w(C), n = o(?f), md let p denote the maximum eardinality 
of’ a clique of G containing x. Thrn’obviously. 

k = max {m, I1 + p .-- 

<I’orrsider an l*tr-coloring of G and Ict K be the set of vertices having 
the 5arne color as Y. Let, further, L be a set at’ independent vertices of 
ff meeting every n-element clique of ff, Then r = I: u (K i(x ) ) is a 
stable set in G’. Moreover, Tlr intersects every kien en4 clique of G ‘= 
Realiy, if C is a &element clique of G’ and it meets H then, obviously, 
it contains an n-efement clique of H and thus a vertex of L. Or, the other 



hand, if C 
and thus (: 

then Cm 
of K t (.r 
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If; T(_II) is the minimum cardinality of transversals. Denoting by v(H) 
the rnaxirnm nutnbcr af pairwise disjoint edges of IL we obviously 
have 

Let n hypt‘rgraph be caikd ~-rzo~~tl~uZ if the equality hc4ds in (5) for 
t*vq: partial hypergraph of it, 

A hypergmph is said to have the FM/V ~m~e~-t~ if any collection of . . . 

edges whose intersection is empty contains tgvo disjoint edges. It is 
easily seen that normal and r-narmall hypergraphs have tk Helly prop- 
erty. 

Givera a hvpcrgraph II, WL’ c;fn consider its edge-puph G(W) defined . 

as follows: the vertices uf G(~Is are the edges of fl and two edges of H 
arc joined iff they intersect. On the other hntx!, for a @ven graph G we 

can construct, a hypergraph 1I( (.;I by considering the maximal cliques of 
G (in the set-theoretk~l sense) as vertices af PJ and, for anv vertex s Of 
6;. the set of ma -imaf ciiqutis containing .y, ;ts an edgr of k(G). it is 
easily shown 1n ‘* G has no multiple edges (which can be assumed 
thrr,u&out this . 4r) then 



Thert :&ml 2 implies that the perfect pr@ theorem is cqui~valcnt to 

where the edges occurring in more F”“s arc taken with muitiplicity. II’,, 
arlaisct; front H by remcsving an4 muitiphying edges, hichce by Tht~~cro~ 1’ 

it is at5c.1 normal. Le. 
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But, obviously, IJ,, has rz l m a@ys, where nr is the number of vertices 
of H. Since there are at most n disjoint edges in No, we h;rvc 

On the (other hand, a given vertex x is covered by at most one edge of 
cy (JM X) and by no edge of F- , hence -5 

a c=ezntradiction. 

A subhypergraph of a normal hypergraph 
shown e.g. by the “nypergraph 

iS not iJlW3yS nor;llal, ClS 

here (a, 15, cl spans a non-normal subhypergraph. Hypergraphs with the 
prQprt,y that every subhypergnph of them is normal are clescribcd in. 
the following theorem. A hypergraph is baian~t~I if no oddf circuit occurs 
arnon~~ its partral hypergraphs (an odd circuit is a hypergraph isomorphic 
with the hypergraph [{ 1.2). { 2,3 ), . . . . (2~ 2tr+l ). ( 1, M-1 1)). 

Obviously, Theorem 3 gives more equivalent formulatioIls of (iii). ‘The 
tfheorcr$tn is ;;tctuall;r due to Bcrgc I.3 ] I In what follows, we ;~re going to 
give a neW proof for tile non-trivial parts of it. 

Proof. (iii) 3, (i) being trivial, it is enough to show (i) * (Ii) and (ii) * (iii). . 

f 11 Asu~re khat H is ballanced, though it has subhiypergriphs which 
ars, not 2 -chromatic. Let H, be such a subhypergraph with minimum 
number of vertices. Consider the graph C consisting of the two-element 



\ivti c-ancfudc this sectio~r with the remark that bipartite graphs arc;. 

sbvioudy, halan~d iand that normal). On the other hand, “I‘he~rem 4 

shows that balanced hypcrrgrsphs have chromatic nlrmbrr 2. Recently, 

Las Vstrgnas and Fournirr sh;rrper;ed this strttemcnt ltnd showed that 

normal hypcrpphs haw chromatic tlumbcr 2. 
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Rema&. The greatest part sf this theoman is fmnuliated in Fulkemon 
[S ] as a cmsequence of the perfect graph conjecture and the theory of 
aMi-blocking polyhedra. 

Pmof. ( I ). First we show th;nt ( 1 t ) has 3 solution vector with integral 
eniries for any (0, 1 )-vector \I**~. For kt x8 be a slution of it with the 
greatest possible ;rumbet of Vs. Put 

0t;-viously, Jr; 6 w(). We show that .x0 is an integer vector. 
Aswrne indirectly Q < JC I ec: fi f say; thm ~q = 1 l Put 

and 

ix,, .C is a solution of ( I 1) with IV = w. too, and has, obviously. more 
Q’s than x0 has, a contradictiloa. 



(2). Now WC’ prove that also ( 10) has an integer solution vector for 
any (I), I )-witor N . A%tiil~~ indirectly that there are (0, 1 )-vectors MI 
failing to have this property and let q, be on% with minimum number 
of 1 ‘s. Let _va bc 3 soMon of ( Z 0) with M’ = q,. obviousiy, we may 
assume that J$ < 1. Put 

l 
U’ . t ifuIi =: 0, 

&$ = 

0 athcrwise . 

We show Ikrst that _q, is not a solution of e 10) with w = 4. Far let s’ 
k a solution of 4 1 1) with MG = MC we may assume A?’ 5 ~7’. Then 

but this is impos&lr siracc both _q$, I ‘- As’ are non-negative and their 
first entries are jqr and 2. 1 -- C fs,aliw; = 1, i.e., the inner product is 
non-2x30. 

Thus, considering a solrrtion 1-” = iy; 9 . . . . J ;I of’( IO) with w = u” WC w 

have 

and these beriiig integers. 

This implies H/’ + H?~, i.e. by the minimahty property of \Q, y’ can be 

chosen tap be an integer vector. Let 



then 

Now #I is norm,ai. For cansider 3 part a al hypergrnph H’ of it ; let 

L,et xL), yr, be integer sofutioaj vectors of 11 t 1) and ( 10), respectively. 
Simze 



r(1f.j = vcff’, = v ? 

1 if /=ir, ..Jt. . 

J? = 
0 sthuwise . 

1 if i=i,,....i, 1 

xi = 

0 otherwise , 



we have 

i.e. by !. 0 4) the theorem ds pro~wed. 
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