58 research outputs found

    Influence of pions on the hadron-quark phase transition

    Full text link
    In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quark level, we consider two distinct parametrizations of the Polyakov-Nambu-Jona-Lasinio (PNJL) models. In the hadronic side, we use a well known relativistic mean-field (RMF) nonlinear Walecka model. We show that the effect of the pions on the hadron-quark phase diagrams is to move the critical end point (CEP) of the transitions lines. Such an effect also depends on the value of the critical temperature (T_0) in the pure gauge sector used to parametrize the PNJL models. Here we treat the phase transitions using two values for T_0, namely, T_0 = 270 MeV and T_0 = 190 MeV. The last value is used to reproduce lattice QCD data for the transition temperature at zero chemical potential.Comment: 3 pages. Proceedings of XXXV Reuni\~ao de Trabalhos sobre F\'isica Nuclear no Brasil 201

    In Campylobacter jejuni, a new type of chaperone receives heme from ferrochelatase

    Get PDF
    Funding Information: JZ is a recipient of the MSCA-IF-2019 Individual Fellowship H2020-WF-02-2019, 101003441. FS acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation program (grant agreement 803768). This work was also financially supported by Fundação para a Ciência e Tecnologia (Portugal) through PTDC/BIA-BQM/28642/2017 grant (LS), the MOSTMICRO-ITQB R&D Unit (UIDB/04612/2020 and UIDP/04612/2020), and the LS4FUTURE Associated Laboratory (LA/P/0087/2020). Publisher Copyright: Copyright © 2023 Zamarreño Beas, Videira, Karavaeva, Lourenço, Almeida, Sousa and Saraiva.Intracellular heme formation and trafficking are fundamental processes in living organisms. Bacteria and archaea utilize three biogenesis pathways to produce iron protoporphyrin IX (heme b) that diverge after the formation of the common intermediate uroporphyrinogen III (uro’gen III). In this study, we identify and provide a detailed characterization of the enzymes involved in the transformation of uro’gen III into heme in Campylobacter jejuni, demonstrating that this bacterium utilizes the protoporphyrin-dependent (PPD) pathway. In general, limited knowledge exists regarding the mechanisms by which heme b reaches its target proteins after this final step. Specifically, the chaperones necessary for trafficking heme to prevent the cytotoxic effects associated with free heme remain largely unidentified. In C. jejuni, we identified a protein named CgdH2 that binds heme with a dissociation constant of 4.9 ± 1.0 µM, and this binding is impaired upon mutation of residues histidine 45 and 133. We demonstrate that C. jejuni CgdH2 establishes protein–protein interactions with ferrochelatase, suggesting its role in facilitating heme transfer from ferrochelatase to CgdH2. Furthermore, phylogenetic analysis reveals that C. jejuni CgdH2 is evolutionarily distinct from the currently known chaperones. Therefore, CgdH2 is the first protein identified as an acceptor of intracellularly formed heme, expanding our knowledge of the mechanisms underlying heme trafficking within bacterial cells.publishersversionpublishe

    The structure of a Bacteroides thetaiotaomicron carbohydrate-binding module provides new insight into the recognition of complex pectic polysaccharides by the human microbiome

    Get PDF
    Funding Information: We thank Prof. Carlos Fontes and Dr Joana Bras (NZYTech, Portugal) for their assistance in obtaining the initial BT0996-C clone. We are grateful to Prof Ten Feizi, Dr Yan Liu and Dr Lisete Silva from the Glycosciences Laboratory (Imperial College London, UK) for their support and assistance on robotic microarray printing. This work was supported by the FCT - Fundação para a Ciência e a Tecnologia, I.P., through the DL-57/2016 Program Contract (BP). This work is financed by national funds from FCT - Fundação para a Ciência e a Tecnologia, I.P., in the scope of the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy - i4HB. The authors acknowledge the European Synchrotron Radiation Facility (Grenoble, France) and ALBA (Barcelona, Spain) for access to beamlines ID30B and BL-13 XALOC, respectively. Publisher Copyright: © 2022The Bacteroides thetaiotaomicron has developed a consortium of enzymes capable of overcoming steric constraints and degrading, in a sequential manner, the complex rhamnogalacturonan II (RG-II) polysaccharide. BT0996 protein acts in the initial stages of the RG-II depolymerisation, where its two catalytic modules remove the terminal monosaccharides from RG-II side chains A and B. BT0996 is modular and has three putative carbohydrate-binding modules (CBMs) for which the roles in the RG-II degradation are unknown. Here, we present the characterisation of the module at the C-terminal domain, which we designated BT0996-C. The high-resolution structure obtained by X-ray crystallography reveals that the protein displays a typical β-sandwich fold with structural similarity to CBMs assigned to families 6 and 35. The distinctive features are: 1) the presence of several charged residues at the BT0996-C surface creating a large, broad positive lysine-rich patch that encompasses the putative binding site; and 2) the absence of the highly conserved binding-site signatures observed in CBMs from families 6 and 35, such as region A tryptophan and region C asparagine. These findings hint at a binding mode of BT0996-C not yet observed in its homologues. In line with this, carbohydrate microarrays and microscale thermophoresis show the ability of BT0996-C to bind α1-4-linked polygalacturonic acid, and that electrostatic interactions are essential for the recognition of the anionic polysaccharide. The results support the hypothesis that BT0996-C may have evolved to potentiate the action of BT0996 catalytic modules on the complex structure of RG-II by binding to the polygalacturonic acid backbone sequence.publishersversionpublishe

    Evolution of critically ill patients with gastroschisis from three tertiary centers

    Get PDF
    OBJECTIVES AND INTRODUCTION: Gastroschisis is a congenital abdominal wall defect with increasing occurrence worldwide over the past 20-30 years. Our aim was to analyze the morbidity of newborns after gastroschisis closure, with emphasis on metabolic and hydroelectrolyte disturbances in patients at three tertiary university centers. METHODS: From January 2003 to June 2009, the following patient data were collected retrospectively: (A) Background maternal and neonatal data: maternal age, prenatal diagnosis, type of delivery, Apgar scores, birth weight, gestational age and sex; (B) Surgical modalities: primary or staged closure; and (C) Hospital course: levels of serum sodium and levels of serum albumin in the two first postoperative days, number of ventilation days, other postoperative variables and survival. Statistical analyses were used to examine the associations between some variables. RESULTS: 163 newborns were included in the study. Primary closure of the abdominal defect was performed in 111 cases (68.1%). The mean serum sodium level was 127.4¡6.7 mEq/L, and the mean serum albumin level was 2.35¡0.5 g/dL. Among the correlations between variables, it was verified that hyponatremia and hypoalbuminemia correlated with the number of days on the ventilator but not with the number of days on total parenteral nutrition (TPN); mortality rate correlated with infection. The final survival rate was 85.9%. CONCLUSION: In newborns with gastroschisis, more aggressive attention to hyponatremia and hypoalbuminemia would improve the outcome

    Corticosteroid effect upon intestinal and hepatic interleukin profile in a gastroschisis rat model

    Full text link
    PURPOSE: To evaluate the effect of corticosteroids on intestinal and liver interleukin profile in an experimental model of gastroschisis in fetal rats. METHODS: Sprague-Dawley rats at 19.5 days of gestation had its fetuses operated for the creation of gastroschisis. Two groups of fetuses were studied with and without maternal administration of dexamethasone. Each group was composed of fetuses who underwent gastroschisis (G), control fetuses without manipulation (C) and sham fetuses (S). A dosage of the following interleukins was carried out in fetal intestinal and liver tissues: IL-1, IL-6, IL-10, tumor necrosis factor-alpha (TNF-&#945;) and interferon-gamma (IFN-&#947;). The differences between the groups and subgroups were tested by ANOVA with Tukey post-test, with significant values of p<0.05. RESULTS: Dexamethasone led to an increase in intestinal and liver IL-6 (p<0.05) and a decrease in intestinal TNF-&#945; (p<0.001) in fetuses with gastroschisis. CONCLUSION: Corticosteroids had an effect on the intestinal interleukin profile and a small effect on the liver interleukin profile due to immunological immaturity of the fetus, and also of fetuses with gastroschisis. The steroid action may not be exclusively anti-inflammatory, but also pro-inflammatory, varying with time of pregnancy

    The role of gut-liver axis in the restriction of intrauterine growth in a model of experimental gastroschisis

    Full text link
    PURPOSE: To evaluate the intrauterine growth restriction (IUGR) by the expression of IR-&#946;, IRS-1, IRS-2, IGF-IR&#946; and Ikappa&#946; in experimental model of gastroschisis. METHODS: Pregnant rats at 18.5 days of gestation were submitted to surgery to create experimental fetal gastroschisis (term = 22 days) were divided in three groups: gastroschisis (G), control (C) and sham (S). Fetuses were evaluated for body weight (BW), intestinal (IW), liver (LW) and their relations IW/BW and LW/BW. IR-&#946; and IGF-IR&#946; receptors, IRS-1 and IRS-2 substrates and Ikappa&#946; protein were analyzed by western blotting. RESULTS: BW was lower in G, the IW and IW / BW were greater than C and S (p<0.05) groups. The liver showed no differences between groups. In fetuses with gastroschisis, compared with control fetuses, the expression of IGF-IR&#946; (p<0.001) and Ikappa&#946; (p<0.001) increased in the liver and intestine, as well as IR-&#946; (p<0.001) which decreased in both. In contrast to the intestine, IRS-1 (p<0.001) increased in the liver and IRS-2 decreased (p<0.01). CONCLUSION: The axis of the intestine liver has an important role in inflammation, with consequent changes in the metabolic pathway of glucose can contribute to the IUGR in fetuses with gastroschisis
    • …
    corecore