8 research outputs found

    Réponse au parasitisme par des guêpes chez la drosophile : rôle de la voie de signalisation Toll/NFkB

    Get PDF
    In all organisms, the immune response is divided into two parts: the humoral response, which consists of producing a large number of molecules to combat the pathogen, and the cellular response, which relies on immune cells produced during hematopoiesis. In adult mammals, hematopoiesis occurs in the bone marrow, where a particular microenvironment called the "hematopoietic niche" controls self-renewal, proliferation and differentiation of Hematopoietic Stem Cells (HSCs), which give rise to all blood cell types. Following a pathogenic infection, the hematopoietic system's homeostasis is modified in order to obtain an adapted cellular immune response. The role that the hematopoietic niche plays during an immune response remains unclear. Drosophila is used as a model system to study in vivo hematopoiesis and the immune response. In drosophila, hematopoiesis occurs at the larval stage in a specialized organ called the Lymph Gland (LG). Within this organ, a small group of cells termed the Posterior Signalling Center (PSC), controls the balance between hematopoietic progenitors and differentiated immune/blood cells, a role similar to the mammalian hematopoietic niche. Following an immune challenge, especially in response to wasp parasitism, a massive differentiation of specific immune cells called lamellocytes occurs in the LG. The LG subsequently disperses to release lamellocytes into the hemolymph. During parasitism, the wasp lays an egg in the drosophila larva. In the absence of a cellular immune response, the wasp egg will develop and kill its host. By forming a capsule around the wasp egg, lamellocytes impede the pathogen's development and permit the host's survival. During my PhD, I studied the drosophila larva cellular immune response to wasp parasitism. I focused my research on the role of the "hematopoietic niche". I therefore initiated a transcriptomic study, in order to identify genes expressed by the PSC in response to parasitism. In parallel, I characterized the role of the Toll/NF?B signalling pathway in the LG during parasitism. The Toll/NF?B pathway plays a key role in the humoral response both in drosophila and mammals; however its role in the cellular immune response remains unknown. My results indicate that the Toll/NF?B pathway is activated in the PSC following parasitism. Its activation is mediated by the NF?B transcription factor " Dorsal-related Immunity Factor " (Dif), which is required in the PSC for rapid lamellocyte production and LG dispersion. Furthermore, I established the existence of a genetic network comprising the Toll/NFkB and EGFR signalling pathways and Reactive Oxygen Species (ROS), in order to control the immune response to parasitism. An increase in ROS levels in the PSC and EGFR pathway activation in the immune cells, have been described as required for wasp egg encapsulation. My data suggest that the ROS and the EGFR pathway are also required for LG dispersion following wasp parasitism, in PSC cells and in hematopoietic progenitors, respectively. Based on the high conservation of signalling pathways and molecular processes controlling hematopoiesis, my results raise the question of whether such a network is conserved in the mammalian hematopoietic niche in response to pathogenic infections.Dans tous les organismes animaux la réponse immunitaire est divisée en deux composantes : la réponse humorale, qui consiste en la production d'un grand nombre de molécules toxiques pour le pathogène, et la réponse cellulaire, qui met en jeu des cellules immunitaires produites lors de l'hématopoïèse. Chez les mammifères adultes, l'hématopoïèse se déroule dans la moelle osseuse, où un microenvironnement particulier appelé " niche hématopoïétique " contrôle l'auto-renouvèlement, la prolifération et la différenciation des Cellules Souches Hématopoïétiques (CSH) à l'origine de l'ensemble des cellules sanguines/immunitaires. Suite à une infection par un pathogène, l'homéostasie du système hématopoïétique est modifiée, afin de permettre la mise en place d'une réponse immunitaire cellulaire adaptée. Le rôle de la niche hématopoïétique dans le contrôle de l'hématopoïèse suite à une infection reste à ce jour mal connu. La drosophile est utilisée comme système modèle pour étudier in vivo l'hématopoïèse et la réponse immunitaire. L'hématopoïèse a lieu chez la drosophile au stade larvaire dans un organe spécialisé appelé Glande Lymphatique (GL). Au sein de cet organe, un petit groupe de cellules, le Centre de Signalisation Postérieur (PSC), contrôle l'équilibre entre progéniteurs hématopoïétiques et cellules immunitaires différenciées, et a donc un rôle équivalent à celui de la niche hématopoïétique des mammifères. Suite à un stress immun, tel que le parasitisme par des guêpes, une différenciation massive de cellules immunitaires spécifiques, les lamellocytes, a lieu dans la GL; puis la dispersion de la GL permet la libération des lamellocytes dans la circulation lymphatique. Lors du parasitisme, la guêpe pond un œuf dans le corps de la larve de drosophile. En absence de réponse immunitaire cellulaire, l'œuf de guêpe se développe au dépend de son hôte, entraînant sa mort. En formant une capsule autour de l'œuf de guêpe, les lamellocytes neutralisent son développement et permettent la survie de l'hôte. Au cours de ma thèse, je me suis intéressée à la réponse immunitaire cellulaire de la larve de drosophile au parasitisme par des guêpes. Je me suis plus particulièrement intéressée au rôle de la " niche hématopoïétique " dans cette réponse. Pour cela, j'ai initié une approche transcriptomique ayant pour but d'identifier les gènes spécifiquement exprimés dans le PSC en réponse au parasitisme. En parallèle, j'ai caractérisé le rôle de la voie de signalisation Toll/NF?B dans la GL lors de la réponse au parasitisme. La voie Toll/NF?B joue un rôle essentiel dans la réponse immunitaire humorale et son rôle dans la réponse immunitaire cellulaire reste à définir. Mes travaux indiquent que la voie Toll/NF?B est activée dans le PSC suite au parasitisme. Son activation est médiée par le facteur de transcription NF?B "Dorsal-related Immunity Factor" (Dif), qui est requis dans le PSC pour permettre la différenciation rapide et massive de lamellocytes et la dispersion des cellules de la GL. De plus, j'ai établi un réseau génique, impliquant les deux voies de signalisation Toll/NF?B et EGFR ainsi que les espèces réactives de l'oxygène (ROS) dans le contrôle de la réponse au parasitisme. Une augmentation du niveau de ROS dans le PSC et l'activation de la voie EGFR dans les cellules immunitaires ont été décrits comme nécessaires à l'encapsulation des œufs de guêpe après parasitisme. Mes données établissent qu'ils sont en plus requis respectivement dans les cellules du PSC et dans les progéniteurs hématopoïétiques pour permettre la dispersion de la GL après parasitisme. Basé sur la forte conservation des voies de signalisation et processus moléculaires contrôlant l'hématopoïèse entre les mammifères et la drosophile, mes résultats posent la question de la conservation du réseau génique établi chez la drosophile et du rôle de la voie NF?B dans la niche hématopoïétique des mammifères lors d'une réponse à une infection

    Reactive oxygen species-dependent Toll/ NF-kB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism

    Get PDF
    International audienceHematopoietic stem/progenitor cells in the adult mammalian bone marrow ensure blood cell renewal. Their cellular microenvironment, called 'niche', regulates hematopoiesis both under homeostatic and immune stress conditions. In the Drosophila hematopoietic organ, the lymph gland, the posterior signaling center (PSC) acts as a niche to regulate the hematopoietic response to immune stress such as wasp parasitism. This response relies on the differentiation of lamellocytes, a cryptic cell type, dedicated to pathogen encapsulation and killing. Here, we establish that Toll/NF-kB pathway activation in the PSC in response to wasp parasitism non-cell autonomously induces the lymph gland immune response. Our data further establish a regulatory network where co-activation of Toll/NF-kB and EGFR signaling by ROS levels in the PSC/niche controls lymph gland hematopoiesis under parasitism. Whether a similar regulatory network operates in mammals to control emergency hematopoiesis is an open question

    Drosophila response to wasp parasitism : role of the Toll/NFkappaB signalling pathway

    No full text
    Dans tous les organismes animaux la réponse immunitaire est divisée en deux composantes : la réponse humorale, qui consiste en la production d'un grand nombre de molécules toxiques pour le pathogène, et la réponse cellulaire, qui met en jeu des cellules immunitaires produites lors de l'hématopoïèse. Chez les mammifères adultes, l'hématopoïèse se déroule dans la moelle osseuse, où un microenvironnement particulier appelé " niche hématopoïétique " contrôle l'auto-renouvèlement, la prolifération et la différenciation des Cellules Souches Hématopoïétiques (CSH) à l'origine de l'ensemble des cellules sanguines/immunitaires. Suite à une infection par un pathogène, l'homéostasie du système hématopoïétique est modifiée, afin de permettre la mise en place d'une réponse immunitaire cellulaire adaptée. Le rôle de la niche hématopoïétique dans le contrôle de l'hématopoïèse suite à une infection reste à ce jour mal connu. La drosophile est utilisée comme système modèle pour étudier in vivo l'hématopoïèse et la réponse immunitaire. L'hématopoïèse a lieu chez la drosophile au stade larvaire dans un organe spécialisé appelé Glande Lymphatique (GL). Au sein de cet organe, un petit groupe de cellules, le Centre de Signalisation Postérieur (PSC), contrôle l'équilibre entre progéniteurs hématopoïétiques et cellules immunitaires différenciées, et a donc un rôle équivalent à celui de la niche hématopoïétique des mammifères. Suite à un stress immun, tel que le parasitisme par des guêpes, une différenciation massive de cellules immunitaires spécifiques, les lamellocytes, a lieu dans la GL; puis la dispersion de la GL permet la libération des lamellocytes dans la circulation lymphatique. Lors du parasitisme, la guêpe pond un œuf dans le corps de la larve de drosophile. En absence de réponse immunitaire cellulaire, l'œuf de guêpe se développe au dépend de son hôte, entraînant sa mort. En formant une capsule autour de l'œuf de guêpe, les lamellocytes neutralisent son développement et permettent la survie de l'hôte. Au cours de ma thèse, je me suis intéressée à la réponse immunitaire cellulaire de la larve de drosophile au parasitisme par des guêpes. Je me suis plus particulièrement intéressée au rôle de la " niche hématopoïétique " dans cette réponse. Pour cela, j'ai initié une approche transcriptomique ayant pour but d'identifier les gènes spécifiquement exprimés dans le PSC en réponse au parasitisme. En parallèle, j'ai caractérisé le rôle de la voie de signalisation Toll/NF?B dans la GL lors de la réponse au parasitisme. La voie Toll/NF?B joue un rôle essentiel dans la réponse immunitaire humorale et son rôle dans la réponse immunitaire cellulaire reste à définir. Mes travaux indiquent que la voie Toll/NF?B est activée dans le PSC suite au parasitisme. Son activation est médiée par le facteur de transcription NF?B "Dorsal-related Immunity Factor" (Dif), qui est requis dans le PSC pour permettre la différenciation rapide et massive de lamellocytes et la dispersion des cellules de la GL. De plus, j'ai établi un réseau génique, impliquant les deux voies de signalisation Toll/NF?B et EGFR ainsi que les espèces réactives de l'oxygène (ROS) dans le contrôle de la réponse au parasitisme. Une augmentation du niveau de ROS dans le PSC et l'activation de la voie EGFR dans les cellules immunitaires ont été décrits comme nécessaires à l'encapsulation des œufs de guêpe après parasitisme. Mes données établissent qu'ils sont en plus requis respectivement dans les cellules du PSC et dans les progéniteurs hématopoïétiques pour permettre la dispersion de la GL après parasitisme. Basé sur la forte conservation des voies de signalisation et processus moléculaires contrôlant l'hématopoïèse entre les mammifères et la drosophile, mes résultats posent la question de la conservation du réseau génique établi chez la drosophile et du rôle de la voie NF?B dans la niche hématopoïétique des mammifères lors d'une réponse à une infection.In all organisms, the immune response is divided into two parts: the humoral response, which consists of producing a large number of molecules to combat the pathogen, and the cellular response, which relies on immune cells produced during hematopoiesis. In adult mammals, hematopoiesis occurs in the bone marrow, where a particular microenvironment called the "hematopoietic niche" controls self-renewal, proliferation and differentiation of Hematopoietic Stem Cells (HSCs), which give rise to all blood cell types. Following a pathogenic infection, the hematopoietic system's homeostasis is modified in order to obtain an adapted cellular immune response. The role that the hematopoietic niche plays during an immune response remains unclear. Drosophila is used as a model system to study in vivo hematopoiesis and the immune response. In drosophila, hematopoiesis occurs at the larval stage in a specialized organ called the Lymph Gland (LG). Within this organ, a small group of cells termed the Posterior Signalling Center (PSC), controls the balance between hematopoietic progenitors and differentiated immune/blood cells, a role similar to the mammalian hematopoietic niche. Following an immune challenge, especially in response to wasp parasitism, a massive differentiation of specific immune cells called lamellocytes occurs in the LG. The LG subsequently disperses to release lamellocytes into the hemolymph. During parasitism, the wasp lays an egg in the drosophila larva. In the absence of a cellular immune response, the wasp egg will develop and kill its host. By forming a capsule around the wasp egg, lamellocytes impede the pathogen's development and permit the host's survival. During my PhD, I studied the drosophila larva cellular immune response to wasp parasitism. I focused my research on the role of the "hematopoietic niche". I therefore initiated a transcriptomic study, in order to identify genes expressed by the PSC in response to parasitism. In parallel, I characterized the role of the Toll/NF?B signalling pathway in the LG during parasitism. The Toll/NF?B pathway plays a key role in the humoral response both in drosophila and mammals; however its role in the cellular immune response remains unknown. My results indicate that the Toll/NF?B pathway is activated in the PSC following parasitism. Its activation is mediated by the NF?B transcription factor " Dorsal-related Immunity Factor " (Dif), which is required in the PSC for rapid lamellocyte production and LG dispersion. Furthermore, I established the existence of a genetic network comprising the Toll/NFkB and EGFR signalling pathways and Reactive Oxygen Species (ROS), in order to control the immune response to parasitism. An increase in ROS levels in the PSC and EGFR pathway activation in the immune cells, have been described as required for wasp egg encapsulation. My data suggest that the ROS and the EGFR pathway are also required for LG dispersion following wasp parasitism, in PSC cells and in hematopoietic progenitors, respectively. Based on the high conservation of signalling pathways and molecular processes controlling hematopoiesis, my results raise the question of whether such a network is conserved in the mammalian hematopoietic niche in response to pathogenic infections

    La niche hématopoïétique de la drosophile

    No full text
    Le maintien et la fonction des cellules souches qui assurent le renouvellement des tissus sont dépendants du microenvironnement de ces cellules, désigné par le terme « niche ». Chez les mammifères, plusieurs voies de signalisation ont été impliquées dans les communications entre les cellules souches hématopoïétiques et leur niche. Nos connaissances de ces communications restent cependant fragmentaires. La découverte chez la drosophile d’une niche hématopoïétique, le posterior signaling center (PSC), a ouvert de nouvelles possibilités d’études génétiques. Le nombre des cellules du PSC est déterminant pour l’homéostasie entre progéniteurs hématopoïétiques et cellules différenciées. Le décryptage d’une cascade de signalisation contrôlant cette taille a établi de nouveaux parallèles entre la drosophile et les mammifères, et ouvert de nouvelles perspectives d’étude chez l’homme

    L-Type Cav1.3 Calcium Channels Are Required for Beta-Adrenergic Triggered Automaticity in Dormant Mouse Sinoatrial Pacemaker Cells

    No full text
    International audienceBackground: Sinoatrial node cells (SANC) automaticity is generated by functional association between the activity of plasmalemmal ion channels and local diastolic intracellular Ca2+ release (LCR) from ryanodine receptors. Strikingly, most isolated SANC exhibit a “dormant” state, whereas only a fraction shows regular firing as observed in intact SAN. Recent studies showed that β-adrenergic stimulation can initiate spontaneous firing in dormant SANC, though this mechanism is not entirely understood. Methods: To investigate the role of L-type Cav1.3 Ca2+ channels in the adrenergic regulation of automaticity in dormant SANC, we used a knock-in mouse strain in which the sensitivity of L-type Cav1.2 α1 subunits to dihydropyridines (DHPs) was inactivated (Cav1.2DHP−/−), enabling the selective pharmacological inhibition of Cav1.3 by DHPs. Results: In dormant SANC, β-adrenergic stimulation with isoproterenol (ISO) induced spontaneous action potentials (AP) and Ca2+ transients, which were completely arrested with concomitant perfusion of the DHP nifedipine. In spontaneously firing SANC at baseline, Cav1.3 inhibition completely reversed the effect of β-adrenergic stimulation on AP and the frequency of Ca2+ transients. Confocal calcium imaging of SANC showed that the β-adrenergic-induced synchronization of LCRs is regulated by the activity of Cav1.3 channels. Conclusions: Our study shows a novel role of Cav1.3 channels in initiating and maintaining automaticity in dormant SANC upon β-adrenergic stimulation

    Concomitant genetic ablation of L-type Cav1.3 (α1D) and T-type Cav3.1 (α1G) Ca2+ channels disrupts heart automaticity

    No full text
    International audienceCardiac automaticity is set by pacemaker activity of the sinus node (SAN). In addition to the ubiquitously expressed cardiac voltage-gated L-type Cav1.2 Ca2+ channel isoform, pacemaker cells within the SAN and the atrioventricular node co-express voltage-gated L-type Cav1.3 and T-type Cav3.1 Ca2+ channels (SAN-VGCCs). The role of SAN-VGCCs in automaticity is incompletely understood. We used knockout mice carrying individual genetic ablation of Cav1.3 (Cav1.3-/-) or Cav3.1 (Cav3.1-/-) channels and double mutant Cav1.3-/-/Cav3.1-/- mice expressing only Cav1.2 channels. We show that concomitant loss of SAN-VGCCs prevents physiological SAN automaticity, blocks impulse conduction and compromises ventricular rhythmicity. Coexpression of SAN-VGCCs is necessary for impulse formation in the central SAN. In mice lacking SAN-VGCCs, residual pacemaker activity is predominantly generated in peripheral nodal and extranodal sites by f-channels and TTX-sensitive Na+ channels. In beating SAN cells, ablation of SAN-VGCCs disrupted late diastolic local intracellular Ca2+ release, which demonstrates an important role for these channels in supporting the sarcoplasmic reticulum based "Ca2+ clock" mechanism during normal pacemaking. These data implicate an underappreciated role for co-expression of SAN-VGCCs in heart automaticity and define an integral role for these channels in mechanisms that control the heartbeat

    The midgut microbiota plays an essential role in sand fly vector competence for Leishmania major.

    No full text
    For many arthropod vectors, the diverse bacteria and fungi that inhabit the gut can negatively impact pathogen colonization. Our attempts to exploit antibiotic treatment of colonized Phlebotomus duboscqi sand flies in order to improve their vector competency for Leishmania major resulted instead in flies that were refractory to the development of transmissible infections due to the inability of the parasite to survive and to colonize the anterior midgut with infective, metacyclic stage promastigotes. The parasite survival and development defect could be overcome by feeding the flies on different symbiont bacteria but not by feeding them on bacterial supernatants or replete medium. The inhibitory effect of the dysbiosis was moderated by lowering the concentration of sucrose (<30% w/v) used in the sugar feeds to maintain the colony. Exposure of promastigotes to 30% sucrose was lethal to the parasite in vitro. Confocal imaging revealed that the killing in vivo was confined to promastigotes that had migrated to the anterior plug region, corresponding to the highest concentrations of sucrose. The data suggest that sucrose utilization by the microbiota is essential to promote the appropriate osmotic conditions required for the survival of infective stage promastigotes in vivo
    corecore