3,741 research outputs found

    Halogenation of SiC for band-gap engineering and excitonic functionalization

    Full text link
    The optical excitation spectra and excitonic resonances are investigated in systematically functionalized SiC with Fluorine and/or Chlorine utilizing density functional theory in combination with many-body perturbation theory. The latter is required for a realistic description of the energy band-gaps as well as for the theoretical realization of excitons. Structural, electronic and optical properties are scrutinized and show the high stability of the predicted two-dimensional materials. Their realization in laboratory is thus possible. Huge band-gaps of the order of 4 eV are found in the so-called GW approximation, with the occurrence of bright excitons, optically active in the four investigated materials. Their binding energies vary from 0.9 eV to 1.75 eV depending on the decoration choice and in one case, a dark exciton is foreseen to exist in the fully chlorinated SiC. The wide variety of opto-electronic properties suggest halogenated SiC as interesting materials with potential not only for solar cell applications, anti-reflection coatings or high-reflective systems but also for a possible realization of excitonic Bose-Einstein condensation

    Theory of Local Dynamical Magnetic Susceptibilities from the Korringa-Kohn-Rostoker Green Function Method

    Get PDF
    Within the framework of time-dependent density functional theory combined with the Korringa-Kohn-Rostoker Green function formalism, we present a real space methodology to investigate dynamical magnetic excitations from first-principles. We set forth a scheme which enables one to deduce the correct effective Coulomb potential needed to preserve the spin-invariance signature in the dynamical susceptibilities, i.e. the Goldstone mode. We use our approach to explore the spin dynamics of 3d adatoms and different dimers deposited on a Cu(001) with emphasis on their decay to particle-hole pairs.Comment: 32 pages (preprint), 6 figures, one tabl

    Thermally activated magnetization reversal in monoatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations

    Full text link
    We analyze the spontaneous magnetization reversal of supported monoatomic chains of finite length due to thermal fluctuations via atomistic spin-dynamics simulations. Our approach is based on the integration of the Landau-Lifshitz equation of motion of a classical spin Hamiltonian at the presence of stochastic forces. The associated magnetization lifetime is found to obey an Arrhenius law with an activation barrier equal to the domain wall energy in the chain. For chains longer than one domain-wall width, the reversal is initiated by nucleation of a reversed magnetization domain primarily at the chain edge followed by a subsequent propagation of the domain wall to the other edge in a random-walk fashion. This results in a linear dependence of the lifetime on the chain length, if the magnetization correlation length is not exceeded. We studied chains of uniaxial and tri-axial anisotropy and found that a tri-axial anisotropy leads to a reduction of the magnetization lifetime due to a higher reversal attempt rate, even though the activation barrier is not changed.Comment: 2nd version contains some improvements and new Appendi

    Spin Orbit Coupling and Spin Waves in Ultrathin Ferromagnets: The Spin Wave Rashba Effect

    Full text link
    We present theoretical studies of the influence of spin orbit coupling on the spin wave excitations of the Fe monolayer and bilayer on the W(110) surface. The Dzyaloshinskii-Moriya interaction is active in such films, by virtue of the absence of reflection symmetry in the plane of the film. When the magnetization is in plane, this leads to a linear term in the spin wave dispersion relation for propagation across the magnetization. The dispersion relation thus assumes a form similar to that of an energy band of an electron trapped on a semiconductor surfaces with Rashba coupling active. We also show SPEELS response functions that illustrate the role of spin orbit coupling in such measurements. In addition to the modifications of the dispersion relations for spin waves, the presence of spin orbit coupling in the W substrate leads to a substantial increase in the linewidth of the spin wave modes. The formalism we have developed applies to a wide range of systems, and the particular system explored in the numerical calculations provides us with an illustration of phenomena which will be present in other ultrathin ferromagnet/substrate combinations

    Lifetime reduction of surface states at Cu, Ag and Au(111) caused by impurity scattering

    Get PDF
    We present density-functional results on the lifetime of the (111) surface state of the noble metals. We consider scattering on the Fermi surface caused by impurity atoms belonging to the 3d and 4sp series. The results are analyzed with respect to film thickness and with respect to separation of scattering into bulk or into surface states. While for impurities in the surface layer the overall trends are similar to the long-known bulk-state scattering, for adatom-induced scattering we find a surprising behavior with respect to the adatom atomic number. A plateau emerges in the scattering rate of the 3d adatoms, instead of a peak characteristic of the d resonance. Additionally, the scattering rate of 4sp adatoms changes in a zig-zag pattern, contrary to a smooth parabolic increase following Linde's rule that is observed in bulk. We interpret these results in terms of the weaker charge-screening and of interference effects induced by the lowering of symmetry at the surface

    Tuning Nanocrystal Surface Depletion by Controlling Dopant Distribution as a Route Toward Enhanced Film Conductivity

    Full text link
    Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data shows electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and, in agreement with variable temperature conductivity fits, find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films

    Itinerant Nature of Atom-Magnetization Excitation by Tunneling Electrons

    Get PDF
    We have performed single-atom magnetization curve (SAMC) measurements and inelastic scanning tunneling spectroscopy (ISTS) on individual Fe atoms on a Cu(111) surface. The SAMCs show a broad distribution of magnetic moments with \unit[3.5]{\mu_{\rm B}} being the mean value. ISTS reveals a magnetization excitation with a lifetime of \unit[200]{fsec} which decreases by a factor of two upon application of a magnetic field of \unit[12]{T}. The experimental observations are quantitatively explained by the decay of the magnetization excitation into Stoner modes of the itinerant electron system as shown by newly developed theoretical modeling.Comment: 3 Figures, Supplement not included, updated version after revisio

    Unoccupied surface and interface states in Pd thin films deposited on Fe/Ir(111) surface

    Full text link
    We present a systematic first-principles study of the electronic surface states and resonances occuring in thin films of Pd of various thicknesses deposited on a single ferromagnetic monolayer of Fe on top of Ir(111) substrate. This system is of interest since one Pd layer deposited on Fe/Ir(111) hosts small magnetic skyrmions. The latter are topological magnetic objects with swirling spin-textures with possible implications in the context of spintronic devices since they have the potential to be used as magnetic bits for information technology. The stabilization, detection and manipulation of such non-collinear magnetic entities require a quantitative investigation and a fundamental understanding of their electronic structure. Here we investigate the nature of the unoccupied electronic states in Pd/Fe/Ir(111), which are essential in the large spin-mixing magnetoresistance (XMR) signature captured using non spin-polarized scanning tunnelling microscopy [Crum et al., Nat. Commun. {\bf 6} 8541 (2015); Hanneken et al., Nat. Nanotech. {\bf 10}, 1039 (2015)]. To provide a complete analysis, we investigate bare Fe/Ir(111) and Pdn=2,7_{n=2,7}/Fe/Ir(111) surfaces. Our results demonstrate the emergence of surface and interface states after deposition of Pd monolayers, which are strongly impacted by the large spin-orbit coupling of Ir surface.Comment: 16 pages, 11 figure

    Double-lambda microscopic model for entangled light generation by four-wave-mixing

    Get PDF
    Motivated by recent experiments, we study four-wave-mixing in an atomic double-{\Lambda} system driven by a far-detuned pump. Using the Heisenberg-Langevin formalism, and based on the microscopic properties of the medium, we calculate the classical and quantum properties of seed and conju- gate beams beyond the linear amplifier approximation. A continuous variable approach gives us access to relative-intensity noise spectra that can be directly compared to experiments. Restricting ourselves to the cold-atom regime, we predict the generation of quantum-correlated beams with a relative-intensity noise spectrum well below the standard quantum limit (down to -6 dB). Moreover entanglement between seed and conjugate beams measured by an inseparability down to 0.25 is expected. This work opens the way to the generation of entangled beams by four-wave mixing in a cold atomic sample.Comment: 11 pages, 6 figures, submitted to PR

    Control of atomic decay rates via manipulation of reservoir mode frequencies

    Full text link
    We analyse the problem of a two-level atom interacting with a time-dependent dissipative environment modelled by a bath of reservoir modes. In the model of this paper the principal features of the reservoir structure remain constant in time, but the microscopic structure does not. In the context of an atom in a leaky cavity this corresponds to a fixed cavity and a time-dependent external bath. In this situation we show that by chirping the reservoir modes sufficiently fast it is possible to inhibit, or dramatically enhance the decay of the atomic system, even though the gross reservoir structure is fixed. Thus it is possible to extract energy from a cavity-atom system faster than the empty cavity rate. Similar, but less dramatic effects are possible for moderate chirps where partial trapping of atomic population is also possible.Comment: 12 pages, 9 figure
    corecore