Electron conduction through bare metal oxide nanocrystal (NC) films is
hindered by surface depletion regions resulting from the presence of surface
states. We control the radial dopant distribution in tin-doped indium oxide
(ITO) NCs as a means to manipulate the NC depletion width. We find in films of
ITO NCs of equal overall dopant concentration that those with dopant-enriched
surfaces show decreased depletion width and increased conductivity. Variable
temperature conductivity data shows electron localization length increases and
associated depletion width decreases monotonically with increased density of
dopants near the NC surface. We calculate band profiles for NCs of differing
radial dopant distributions and, in agreement with variable temperature
conductivity fits, find NCs with dopant-enriched surfaces have narrower
depletion widths and longer localization lengths than those with
dopant-enriched cores. Following amelioration of NC surface depletion by atomic
layer deposition of alumina, all films of equal overall dopant concentration
have similar conductivity. Variable temperature conductivity measurements on
alumina-capped films indicate all films behave as granular metals. Herein, we
conclude that dopant-enriched surfaces decrease the near-surface depletion
region, which directly increases the electron localization length and
conductivity of NC films