77 research outputs found

    Investigating the interaction between organic anion transporter 1 and ochratoxin A: An in silico structural study to depict early molecular events of substrate recruitment and the impact of single point mutations

    Get PDF
    Organic anion transporters (OATs) belong to a subgroup of the solute carrier 22 transporter family. OATs have a central role in xenobiotic disposition affecting the toxicokinetics of its substrates and inter-individual differences in their expression, activity and function impact both toxicokinetics and toxicodynamics. Amongst OATs, OAT1 (solute carrier family 22 member 6) is involved in the urinary excretion of many xenobiotics bringing substrates into renal proximal tubular cells which can then be secreted across the apical membrane into the tubule lumen. The mycotoxin ochratoxin A has been shown to have a high affinity for OAT1, which is an important renal transporter involved in its urinary excretion. Nowadays, molecular modeling techniques are widely applied to assess protein-ligand interactions and may provide a tool to depict the mechanic of xenobiotic action be it toxicokinetics or toxicodynamics. This work provides a structured pipeline consisting of docking and molecular dynamic simulations to study OAT1-ligand interactions and the impact of OAT1 polymorphisms on such interactions. Such a computational structure-based analytical framework allowed to: i) model OAT1-substrate complex formation and depict the features correlating its sequence, structure and its capability to recruit substrates; and ii) investigate the impact of OAT1 missense mutations on substrate recruitment. Perspectives on applying such a structured pipeline to xenobiotic-metabolising enzymes are discussed

    A Computational Understanding of Inter-Individual Variability in CYP2D6 Activity to Investigate the Impact of Missense Mutations on Ochratoxin A Metabolism

    Get PDF
    Cytochrome P-450 (CYP) enzymes have a key role in the metabolism of xenobiotics of food origin, and their highly polymorphic nature concurs with the diverse inter-individual variability in the toxicokinetics (TK) and toxicodynamics (TD) of food chemicals. Ochratoxin A is a well-known mycotoxin which contaminates a large variety of food and is associated with food safety concerns. It is a minor substrate of CYP2D6, although the effects of CYP2D6 polymorphisms on its metabolism may be overlooked. Insights on this aspect would provide a useful mechanistic basis for a more science-based hazard assessment, particularly to integrate inter-individual differences in CYP2D6 metabolism. This work presents a molecular modelling approach for the analysis of mechanistic features with regard to the metabolic capacity of CYP2D6 variants to oxidise a number of substrates. The outcomes highlighted that a low-frequency CYP2D6 variant (CYP2D6*110) is likely to enhance ochratoxin A oxidation with possible consequences on TK and TD. It is therefore recommended to further analyse such TK and TD consequences. Generally speaking, we propose the identification of mechanistic features and parameters that could provide a semi-quantitative means to discriminate ligands based on the likelihood to undergo transformation by CYP2D6 variants. This would support the development of a fit-for-purpose pipeline which can be extended to a tool allowing for the bulk analysis of a large number of compounds. Such a tool would ultimately include inter-phenotypic differences of polymorphic xenobiotic-metabolising enzymes in the hazard assessment and risk characterisation of food chemicals

    Regulation of P-Glycoprotein in Renal Proximal Tubule Epithelial Cells by LPS and TNF-α

    Get PDF
    During endotoxemia, the ATP-dependent drug efflux pump P-glycoprotein (Abcb1/P-gp) is upregulated in kidney proximal tubule epithelial cells. The signaling pathway through which lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α) regulates P-gp expression and activity was investigated further in the present study. Exposure of rat kidney proximal tubule cells to TNF-α alone or TNF-α and LPS increased P-gp gene and protein expression levels and efflux activity, suggesting de novo P-gp synthesis. Upon exposure to TNF-α in combination with LPS, P-gp activity in renal proximal tubule cells is increased under influence of nitric oxide (NO) produced by inducible NO synthase. Upon exposure to TNF-α alone, P-gp upregulation seems to involve TLR4 activation and nuclear factor kappaB (NF-κB) translocation, a pathway that is likely independent of NO. These findings indicate that at least two pathways regulate P-gp expression in the kidney during endotoxemia

    Defining in vivo dose-response curves for kidney DNA adduct formation of aristolochic acid I in rat, mouse and human by an in vitro and physiologically based kinetic modeling approach

    Get PDF
    Aristolochic acid I (AAI) is a well-known genotoxic kidney carcinogen. Metabolic conversion of AAI into the DNA-reactive aristolactam-nitrenium ion is involved in the mode of action of tumor formation. This study aims to predict in vivo AAI-DNA adduct formation in the kidney of rat, mouse and human by translating the in vitro concentration-response curves for AAI-DNA adduct formation to the in vivo situation using physiologically based kinetic (PBK) modeling-based reverse dosimetry. DNA adduct formation in kidney proximal tubular LLC-PK1 cells exposed to AAI was quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry. Subsequently, the in vitro concentration-response curves were converted to predicted in vivo dose-response curves in rat, mouse and human kidney using PBK models. Results obtained revealed a dose-dependent increase in AAI-DNA adduct formation in the rat, mouse and human kidney and the predicted DNA adduct levels were generally within an order of magnitude compared with values reported in the literature. It is concluded that the combined in vitro PBK modeling approach provides a novel way to define in vivo dose-response curves for kidney DNA adduct formation in rat, mouse and human and contributes to the reduction, refinement and replacement of animal testing

    EURL ECVAM Workshop on New Generation of Physiologically-Based Kinetic Models in Risk Assessment

    Get PDF
    The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) Strategy Document on Toxicokinetics (TK) outlines strategies to enable prediction of systemic toxicity by applying new approach methodologies (NAM). The central feature of the strategy focuses on using physiologically-based kinetic (PBK) modelling to integrate data generated by in vitro and in silico methods for absorption, distribution, metabolism, and excretion (ADME) in humans for predicting whole-body TK behaviour, for environmental chemicals, drugs, nano-materials, and mixtures. In order to facilitate acceptance and use of this new generation of PBK models, which do not rely on animal/human in vivo data in the regulatory domain, experts were invited by EURL ECVAM to (i) identify current challenges in the application of PBK modelling to support regulatory decision making; (ii) discuss challenges in constructing models with no in vivo kinetic data and opportunities for estimating parameter values using in vitro and in silico methods; (iii) present the challenges in assessing model credibility relying on non-animal data and address strengths, uncertainties and limitations in such an approach; (iv) establish a good kinetic modelling practice workflow to serve as the foundation for guidance on the generation and use of in vitro and in silico data to construct PBK models designed to support regulatory decision making. To gauge the current state of PBK applications, experts were asked upfront of the workshop to fill a short survey. In the workshop, using presentations and discussions, the experts elaborated on the importance of being transparent about the model construct, assumptions, and applications to support assessment of model credibility. The experts offered several recommendations to address commonly perceived limitations of parameterization and evaluation of PBK models developed using non-animal data and its use in risk assessment, these include: (i) develop a decision tree for model construction; (ii) set up a task force for independent model peer review; (iii) establish a scoring system for model evaluation; (iv) attract additional funding to develop accessible modelling software.; (v) improve and facilitate communication between scientists (model developers, data provider) and risk assessors/regulators; and (vi) organise specific training for end users. The experts also acknowledged the critical need for developing a guidance document on building, characterising, reporting and documenting PBK models using non-animal data. This document would also need to include guidance on interpreting the model analysis for various risk assessment purposes, such as incorporating PBK models in integrated strategy approaches and integrating them with in vitro toxicity testing and adverse outcome pathways. This proposed guidance document will promote the development of PBK models using in vitro and silico data and facilitate the regulatory acceptance of PBK models for assessing safety of chemicals

    Exposure assessment of process-related contaminants in food by biomarker monitoring

    Get PDF
    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment
    corecore