1,415 research outputs found

    In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors.

    Get PDF
    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.A.C.F., J.M.G. and C.P.G. acknowledge the Sims Scholarship (A.C.F.), EPSRC (through the Supergen consortium for J.M.G.) and the EU ERC (through an Advanced Fellowship to C.P.G.) for financial support. P.S. and W.-Y.T. acknowledge support from the European Research Council (ERC, Advanced Grant, ERC-2011-AdG, Project 291543–IONACES). P.S. also acknowledges financial support from the Chair ‘Embedded Multi-Functional Nanomaterials’ from the Airbus Group Foundation. A.C.F. and J.M.G. thank the NanoDTC Cambridge for travel funding.This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4318.html#abstract.

    Use of an asparaginyl endopeptidase for chemo-enzymatic peptide and protein labeling

    Get PDF
    Asparaginyl endopeptidases (AEPs) are ideal for peptide and protein labeling. However, because of the reaction reversibility, a large excess of labels or backbone modified substrates are needed. In turn, simple and cheap reagents can be used to label N-terminal cysteine, but its availability inherently limits the potential applications. Aiming to address these issues, we have created a chemo-enzymatic labeling system that exploits the substrate promiscuity of AEP with the facile chemical reaction between N-terminal cysteine and 2-formyl phenylboronic acid (FPBA). In this approach, AEP is used to ligate polypeptides with a Asn–Cys–Leu recognition sequence with counterparts possessing an N-terminal Gly–Leu. Instead of being a labeling reagent, the commercially available FPBA serves as a scavenger converting the byproduct Cys–Leu into an inert thiazolidine derivative. This consequently drives the AEP labeling reaction forward to product formation with a lower ratio of label to protein substrate. By carefully screening the reaction conditions for optimal compatibility and minimal hydrolysis, conversion to the ligated product in the model reaction resulted in excellent yields. The versatility of this AEP-ligation/FPBA-coupling system was further demonstrated by site-specifically labeling the N- or C-termini of various proteins

    Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications

    Get PDF
    Progress in targeted gene editing by programmable endonucleases has paved the way for their use in gene therapy. Particularly, Cas9 is an endonuclease with high activity and flexibility, rendering it an attractive option for therapeutic applications in clinical settings. Many disease-causing mutations could potentially be corrected by this versatile new technology. In addition, recently developed switchable Cas9 variants, whose activity can be controlled by an external stimulus, provide an extra level of spatiotemporal control on gene editing and are particularly desirable for certain applications. Here, we discuss the considerations and difficulties for implementing Cas9 to in vivo gene therapy. We put particular emphasis on how switchable Cas9 variants may resolve some of these barriers and advance gene therapy in the clinical setting

    Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications

    Get PDF
    Progress in targeted gene editing by programmable endonucleases has paved the way for their use in gene therapy. Particularly, Cas9 is an endonuclease with high activity and flexibility, rendering it an attractive option for therapeutic applications in clinical settings. Many disease-causing mutations could potentially be corrected by this versatile new technology. In addition, recently developed switchable Cas9 variants, whose activity can be controlled by an external stimulus, provide an extra level of spatiotemporal control on gene editing and are particularly desirable for certain applications. Here, we discuss the considerations and difficulties for implementing Cas9 to in vivo gene therapy. We put particular emphasis on how switchable Cas9 variants may resolve some of these barriers and advance gene therapy in the clinical setting

    Cyanine dye mediated mitochondrial targeting enhances the anti-cancer activity of small-molecule cargoes

    Get PDF
    Organelle-specific delivery systems are of significant clinical interest. We demonstrate the use of common cyanine dyes Cy3 and Cy5 as vectors for targeting and delivering cargoes to mitochondria in cancer cells. Specifically, conjugation to the dyes can increase cytotoxicity by up to 1000-fold

    Population genomics of domestic and wild yeasts

    Get PDF
    The natural genetics of an organism is determined by the distribution of sequences of its genome. Here we present one- to four-fold, with some deeper, coverage of the genome sequences of over seventy isolates of the domesticated baker's yeast, _Saccharomyces cerevisiae_, and its closest relative, the wild _S. paradoxus_, which has never been associated with human activity. These were collected from numerous geographic locations and sources (including wild, clinical, baking, wine, laboratory and food spoilage). These sequences provide an unprecedented view of the population structure, natural (and artificial) selection and genome evolution in these species. Variation in gene content, SNPs, indels, copy numbers and transposable elements provide insights into the evolution of different lineages. Phenotypic variation broadly correlates with global genome-wide phylogenetic relationships however there is no correlation with source. _S. paradoxus_ populations are well delineated along geographic boundaries while the variation among worldwide _S. cerevisiae_ isolates show less differentiation and is comparable to a single _S. paradoxus_ population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of _S. cerevisiae_ shows a few well defined geographically isolated lineages and many different mosaics of these lineages, supporting the notion that human influence provided the opportunity for outbreeding and production of new combinations of pre-existing variation

    Adamtsl3 mediates DCC signaling to selectively promote GABAergic synapse function

    Full text link
    The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients

    Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber

    Full text link
    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure

    Ellipsometry with an undetermined polarization state

    Get PDF
    We show that, under the right conditions, one can make highly accurate polarization-based measurements without knowing the absolute polarization state of the probing light field. It is shown that light, passed through a randomly varying birefringent material has a well-defined orbit on the Poincare sphere, which we term a generalized polarization state, that is preserved. Changes to the generalized polarization state can then be used in place of the absolute polarization states that make up the generalized state, to measure the change in polarization due to a sample under investigation. We illustrate the usefulness of this analysis approach by demonstrating fiber-based ellipsometry, where the polarization state of the probe light is unknown, and, yet, the ellipsometric angles of the investigated sample (ι\Psi and Δ\Delta) are obtained with an accuracy comparable to that of conventional ellipsometry instruments by measuring changes to the generalized polarization state.Comment: 6 pages, 4 figures, 1 tabl
    • 

    corecore