4 research outputs found

    HCF, LCF and creep life analysis of a generic LRE turbine blade

    No full text
    A numerical turbine blade fatigue life analysis method is suggested. This method comprises: For the HCF analysis, a stationary thermal 3d Finite Element analysis, a followon (one-way coupled) quasi stationary structural 3d Finite Element analysis (including four load steps) of a single and two half turbine blades as well as the related disk and rotor section and a (Haigh based) post-processing fatigue life analysis for the highest HCF-loaded point of the turbine blade. For the LCF analysis, a transient thermal 3d Finite Element analysis, a follow-on (one-way coupled) quasi-stationary structural 3d Finite Element analysis of a single and two half turbine blades as well as the related disk and rotor section and a (Coffin-Manson based) post-processing fatigue life analysis approach for the highest LCF-loaded point of the turbine blade. For the creep analysis, a quasi-stationary 3d Finite Element analysis of a single turbine blade and two half turbine blades for the full hot-run duration under constant maximum loading condition (worst case approach). Finally, this approach is demonstrated by the numerical HCF, LCF and creep analysis of a generic Hydrogen turbo pump (1st rotor row) turbine blade of a 1 MN thrust class gas generator LOX-LH2 Liquid Rocket Engine (LRE)

    Evaluation of Integral Forces and Pressure Fields from Planar Velocimetry Data for Incompressible and Compressible Flows

    No full text
    The approach to determine pressure fields and integral loads from planar velocimetry data is discussed, in relation to the implementation for incompressible and compressible flows around two-dimensional objects. The method relies upon the application of control-volume approaches in combination with the deduction of the pressure field from the experimental data, by making use of the flow constitutive equations. In this paper the implementation for two specific application areas is addressed. The first is time-mean pressure field and force evaluation from velocity ensemble statistics, as obtained from time-uncorrelated PIV acquisition, for incompressible flow. Two test cases are considered for this flow regime: the unsteady vortical flow around a square section cylinder at incidence, as well as the force characterization of a low-speed airfoil. The second topic considers the extension of the method to steady compressible flow, with the supersonic flow around a bi-convex airfoil as experimental test case. As in this flow regime the density appears as an extra unknown in the momentum equation, additional flow equations need to be invoked. A convenient approach for this was found, using the gas law and the adiabatic flow condition, with which the pressure-integration procedure becomes essentially the same as for the incompressible case
    corecore