230 research outputs found

    Review on new approach methods to gain insight into the feto-maternal interface physiology

    Get PDF
    Non-human animals represent a large and important feature in the history of biomedical research. The validity of their use, in terms of reproducible outcomes and translational confidence to the human situation, as well as ethical concerns surrounding that use, have been and remain controversial topics. Over the last 10 years, the communities developing microphysiological systems (MPS) have produced new approach method (NAMs) such as organoids and organs-on-a-chip. These alternative methodologies have shown indications of greater reliability and translatability than animal use in some areas, represent more humane substitutions for animals in these settings, and – with continued scientific effort – may change the conduct of basic research, clinical studies, safety testing, and drug development. Here, we present an introduction to these more human-relevant methodologies and suggest how a suite of pregnancy associated feto-maternal interface system-oriented NAMs may be integrated as reliable partial-/full animal replacements for investigators, significantly aid animal-/environmental welfare, and improve healthcare outcomes

    Adenylyl cyclases types 1 and 8 promote pro-survival pathways after ethanol exposure in the neonatal brain

    Get PDF
    Although a wide range of developmental disabilities following fetal alcohol exposure are observed clinically, the molecular factors that determine the severity of these sequelae remain undefined. In mice exposed to ethanol, deletion of adenylyl cyclases (ACs) 1 and 8 exacerbates the neuroapoptosis that occurs in a prolonged post-treatment period; however, it remains unclear whether AC1 and AC8 are critical to the primary or secondary mechanisms underlying ethanol-induced neurodegeneration. Here we demonstrate that mice lacking AC1 and AC8 (DKO) display significantly increased apoptosis in the striatum, a region sensitive to neuroapoptosis in the acute post-treatment period, compared to WT controls. The enhanced neuroapoptotic response observed in the striatum of DKO mice is accompanied by significant reductions in phosphorylation of known pro-survival proteins, insulin receptor substrate-1 (IRS-1), Akt and extracellular signal-regulated kinases (ERKs). These data suggest that AC1/AC8 are crucial activators of cell survival signaling pathways acutely following ethanol exposure and represent molecular factors that may directly modulate the severity of symptoms associated with Fetal Alcohol Syndrome

    Population-based estimate of sibling risk for preterm birth, preterm premature rupture of membranes, placental abruption and pre-eclampsia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adverse pregnancy outcomes, such as preterm birth, preeclampsia and placental abruption, are common, with acute and long-term complications for both the mother and infant. Etiologies underlying such adverse outcomes are not well understood. As maternal and fetal genetic factors may influence these outcomes, we estimated the magnitude of familial aggregation as one index of possible heritable contributions.</p> <p>Using the Missouri Department of Health's maternally-linked birth certificate database, we performed a retrospective population-based cohort study of births (1989–1997), designating an individual born from an affected pregnancy as the proband for each outcome studied. We estimated the increased risk to siblings compared to the population risk, using the sibling risk ratio, λ<sub>s</sub>, and sibling-sibling odds ratio (sib-sib OR), for the adverse pregnancy outcomes of preterm birth, preterm premature rupture of membranes (PPROM), placental abruption, and pre-eclampsia.</p> <p>Results</p> <p>Risk to siblings of an affected individual was elevated above the population prevalence of a given disorder, as indicated by λ<sub>S </sub>(λ<sub>S </sub>(95% CI): 4.3 (4.0–4.6), 8.2 (6.5–9.9), 4.0 (2.6–5.3), and 4.5 (4.4–4.8), for preterm birth, PPROM, placental abruption, and pre-eclampsia, respectively). Risk to siblings of an affected individual was similarly elevated above that of siblings of unaffected individuals, as indicated by the sib-sib OR (sib-sib OR adjusted for known risk factors (95% CI): 4.2 (3.9–4.5), 9.6 (7.6–12.2), 3.8 (2.6–5.5), 8.1 (7.5–8.8) for preterm birth, PPROM, placental abruption, and pre-eclampsia, respectively).</p> <p>Conclusion</p> <p>These results suggest that the adverse pregnancy outcomes of preterm birth, PPROM, placental abruption, and pre-eclampsia aggregate in families, which may be explained in part by genetics.</p

    Comparative transcriptomic analysis of human placentae at term and preterm delivery.

    Get PDF
    Preterm birth affects 1 out of every 10 infants in the United States, resulting in substantial neonatal morbidity and mortality. Currently, there are few predictive markers and few treatment options to prevent preterm birth. A healthy, functioning placenta is essential to positive pregnancy outcomes. Previous studies have suggested that placental pathology may play a role in preterm birth etiology. Therefore, we tested the hypothesis that preterm placentae may exhibit unique transcriptomic signatures compared to term samples reflective of their abnormal biology leading to this adverse outcome. We aggregated publicly available placental villous microarray data to generate a preterm and term sample dataset (n = 133, 55 preterm placentae and 78 normal term placentae). We identified differentially expressed genes using the linear regression for microarray (LIMMA) package and identified perturbations in known biological networks using Differential Rank Conservation (DIRAC). We identified 129 significantly differentially expressed genes between term and preterm placenta with 96 genes upregulated and 33 genes downregulated (P-valu

    Unique transcriptomic landscapes identified in idiopathic spontaneous and infection related preterm births compared to normal term births.

    Get PDF
    Preterm birth (PTB) is leading contributor to infant death in the United States and globally, yet the underlying mechanistic causes are not well understood. Histopathological studies of preterm birth suggest advanced villous maturity may have a role in idiopathic spontaneous preterm birth (isPTB). To better understand pathological and molecular basis of isPTB, we compared placental villous transcriptomes from carefully phenotyped cohorts of PTB due to infection or isPTB between 28-36 weeks gestation and healthy term placentas. Transcriptomic analyses revealed a unique expression signature for isPTB distinct from the age-matched controls that were delivered prematurely due to infection. This signature included the upregulation of three IGF binding proteins (IGFBP1, IGFBP2, and IGFBP6), supporting a role for aberrant IGF signaling in isPTB. However, within the isPTB expression signature, we detected secondary signature of inflammatory markers including TNC, C3, CFH, and C1R, which have been associated with placental maturity. In contrast, the expression signature of the gestational age-matched infected samples included upregulation of proliferative genes along with cell cycling and mitosis pathways. Together, these data suggest an isPTB molecular signature of placental hypermaturity, likely contributing to the premature activation of inflammatory pathways associated with birth and providing a molecular basis for idiopathic spontaneous birth

    Preventing Spontaneous Preterm Birth: Insights from Genomics

    Get PDF
    Mortality and morbidity due to infants being born preterm remains one of the greatest health burdens facing society. Many factors influence the risk for spontaneous preterm birth, both genetic and environmental. To date, generally effective interventions to prevent preterm birth have not been identified. In this paper, we discuss the impact of preterm birth and the challenges that have limited insights so far. New advances in genomics, systems biology, and population/personalized medicine show promise in overcoming previous barriers and leading to new insights and preventive treatments

    Ca-Stimulated Type 8 Adenylyl Cyclase Is Required for Rapid Acquisition of Novel Spatial Information and for Working/Episodic-Like Memory

    Get PDF
    Ca-stimulated adenylyl cyclases (ACs) transduce neuronal stimulation-evoked increase in calcium to the production of cAMP, which impinges on the regulation of many aspects of neuronal function. Type 1 and type 8 AC (AC1 and AC8) are the only ACs that are directly stimulated by Ca. Although AC1 function was implicated in regulating reference spatial memory, the function of AC8 in memory formation is not known. Because of the different biochemical properties of AC1 and AC8, these two enzymes may have distinct functions. For example, AC1 activity is regulated by both Ca and G-proteins. In contrast, AC8 is a pure Ca sensor. It is neither stimulated by Gs nor inhibited by Gi. Recent studies also suggested that AC1 and AC8 were differentially concentrated at different subcellular domains, implicating that Ca-stimulated signaling might be compartmentalized. In this study, we used AC8 knock-out (KO) mice and found behavioral deficits in memory retention for temporal dissociative passive avoidance and object recognition memory. When examined by Morris water maze, AC8KOmice showed normal reference memory. However, the acquisition of newer spatial information was defective in AC8 KO mice. Furthermore, AC8 KO mice were severely impaired in hippocampus-dependent episodic-like memory when examined by the delayed matching-to-place task. Because AC8 is preferentially localized at the presynaptic active zone, our results suggest a novel role of presynaptic cAMP signaling in memory acquisition and retention, as well as distinct mechanisms underlying reference and working/episodic-like memory

    Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior

    Get PDF
    The central nucleus of the amygdala (CeA) has been identified as a site of nociceptive processing important for sensitization induced by peripheral injury. However, the cellular signaling components underlying this function remain unknown. Here, we identify metabotropic glutamate receptor 5 (mGluR5) as an integral component of nociceptive processing in the CeA. Pharmacological activation of mGluRs with R,S-3,5-dihydroxyphenylglycine (DHPG) in the CeA of mice is sufficient to induce peripheral hypersensitivity in the absence of injury. DHPG-induced peripheral hypersensitivity is reduced via pharmacological blockade of mGluR5 or genetic disruption of mGluR5. Further, pharmacological blockade or conditional deletion of mGluR5 in the CeA abrogates inflammation-induced hypersensitivity, demonstrating the necessity of mGluR5 in CeA-mediated pain modulation. Moreover, we demonstrate that phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2) is downstream of mGluR5 activation in the CeA and is necessary for the full expression of peripheral inflammation-induced behavioral sensitization. Finally, we present evidence of right hemispheric lateralization of mGluR5 modulation of amygdalar nociceptive processing. We demonstrate that unilateral pharmacological activation of mGluR5 in the CeA produces distinct behavioral responses depending on whether the right or left amygdala is injected. We also demonstrate significantly higher levels of mGluR5 expression in the right amygdala compared to the left under baseline conditions, suggesting a potential mechanism for right hemispheric lateralization of amygdala function in pain processing. Taken together, these results establish an integral role for mGluR5 and ERK1/2 in nociceptive processing in the CeA
    corecore