17 research outputs found

    Overcoming heat shock protein inhibition at critical temperature vital for survival in Solanum tuberosum L. in vivo condition

    Get PDF
    Heat stress proteins (HSPs) and related cognates are candidates mediating and preventing cellular damage  from heat-stress, but their expression can be inhibited midway. The time-based occurrence pattern for heat mediated inhibition underlying HSPs expression at 41.5°C and revival subsequent stress was studied in vivo for four Solanum tuberosum L. cultivars viz. Kufri Pukhraj, Kufri Jyoti, Kufri Chandramukhi and Kufri Ashoka. Our  results show that the inhibition process is a functional variance of time and genetic variability characterized by differential down-regulation of housekeeping proteins (HKPs) of about 55.7 and 43.5 KD in some cultivars and  complete inhibition of a prominent 19.9 KD HKP in Kufri Jyoti at all stressed time. Furthermore, the results  strongly suggest HSPs inhibition process bridges the gap between normal proteome and spur expression  maxima for stress proteome and may last for about 1 h for cultivars that effectively eludes the process  upgrading their thermotolerance in vivo.Key words: Solanum tuberosum L., heat-mediated inhibition, heat shock proteins, housekeeping proteins

    Can free open access resources strengthen knowledge-based emerging public health priorities, policies and programs in Africa? [version 1; referees: 2 approved]

    Get PDF
    Tackling emerging epidemics and infectious diseases burden in Africa requires increasing unrestricted open access and free use or reuse of regional and global policies reforms as well as timely communication capabilities and strategies. Promoting, scaling up data and information sharing between African researchers and international partners are of vital importance in accelerating open access at no cost. Free Open Access (FOA) health data and information acceptability, uptake tactics and sustainable mechanisms are urgently needed. These are critical in establishing real time and effective knowledge or evidence-based translation, proven and validated approaches, strategies and tools to strengthen and revamp health systems.  As such, early and timely access to needed emerging public health information is meant to be instrumental and valuable for policy-makers, implementers, care providers, researchers, health-related institutions and stakeholders including populations when guiding health financing, and planning contextual programs

    Report of foliar necrosis of potato caused by Cochliobolus lunatus in India

    No full text
    During the winter season of 2011, Cochliobolus lunatus was isolated from necrotized leaves of potato in potato plantations of Burdwan District, West Bengal State, India. The isolate was identified using standard monographs and taxonomic keys and confirmed molecularly using the Ribosomal Deoxyribonucleic acid (rDNA) sequence data. The Koch’s postulate was confirmed through pathogenicity test on potato cultivar ‘Kufri Jyoti’. This is the first report of C. lunatus causing brown-to-black spots disease of potato in India.Keywords: Brown-to-black spots, pathogenicity, rDNA, Solanum tuberosum L., Cochliobolus lunatusAfrican Journal of Biotechnology Vol. 12(8), pp. 833-83

    Grain Characteristics, Moisture, and Specific Peptides Produced by <i>Ustilaginoidea virens</i> Contribute to False Smut Disease in Rice (<i>Oryza sativa</i> L.)

    No full text
    The fungus Ustilaginoidea virens, the causative agent of false smut in rice (Oryza sativa L.), is responsible for one of the severe grain diseases that lead to significant losses worldwide. In this research, microscopic and proteomic analyses were performed by comparing U. virens infected and non-infected grains of the susceptible and resistant rice varieties to provide insights into the molecular and ultrastructural factors involved in false smut formation. Prominent differentially expressed peptide bands and spots were detected due to false smut formation as revealed by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional gel electrophoresis (2-DE) SDS-PAGE profiles and were identified using liquid chromatography-mass spectrometry (LC-MS/MS). The proteins identified from the resistant grains were involved in diverse biological processes such as cell redox homeostasis, energy, stress tolerance, enzymatic activities, and metabolic pathways. It was found that U. virens produces diverse degrading enzymes such as β-1, 3-endoglucanase, subtilisin-like protease, putative nuclease S1, transaldolase, putative palmitoyl-protein thioesterase, adenosine kinase, and DNase 1 that could discretely alter the host morphophysiology resulting in false smut. The fungus also produced superoxide dismutase, small secreted proteins, and peroxidases during the smut formation. This study revealed that the dimension of rice grain spikes, their elemental composition, moisture content, and the specific peptides produced by the grains and the fungi U. virens play a vital role in the formation of false smut

    Data from: Invasion of Solanum tuberosum L. by Aspergillus terreus: a microscopic and proteomics insight on pathogenicity

    No full text
    Background: Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. Results: Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. Conclusion: A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development

    Host-Range Dynamics of Cochliobolus lunatus: From a Biocontrol Agent to a Severe Environmental Threat

    No full text
    We undertook an investigation to advance understanding of the host-range dynamics and biocontrol implications of Cochliobolus lunatus in the past decade. Potato (Solanum tuberosum L) farms were routinely surveyed for brown-to-black leaf spot disease caused by C. lunatus. A biphasic gene data set was assembled and databases were mined for reported hosts of C. lunatus in the last decade. The placement of five virulent strains of C. lunatus causing foliar necrosis of potato was studied with microscopic and phylogenetic tools. Analysis of morphology showed intraspecific variations in stromatic tissues among the virulent strains causing foliar necrosis of potato. A maximum likelihood inference based on GPDH locus separated C. lunatus strains into subclusters and revealed the emergence of unclustered strains. The evolving nutritional requirement of C. lunatus in the last decade is exhibited by the invasion of vertebrates, invertebrates, dicots, and monocots. Our results contribute towards a better understanding of the host-range dynamics of C. lunatus and provide useful implications on the threat posed to the environment when C. lunatus is used as a mycoherbicide

    Grappling the High Altitude for Safe Edible Bamboo Shoots with Rich Nutritional Attributes and Escaping Cyanogenic Toxicity

    Get PDF
    Consumption of bamboo species with high level of total cyanogenic content (TCC) in Asia by many ethnic groups is significantly associated with food poisoning and occasionally Konzo (a neurological disorder). Adequate characterization of edible bamboo species with low level of TCC and high nutritious attributes is required for consumer’s safety as well as for the conservation of the gene pool. Here, we employed morphological descriptors, atomic absorption spectrophotometer, RAPD, and trnL-F intergenic spacer to characterize 15 indigenous edible bamboo species of north-east India. The study indicates that morphologically and genetically evolved edible bamboo species having large and robust bamboo-shoot texture and growing at low altitude contain high level of TCC, low antioxidant properties, and low levels of beneficial macronutrients and micronutrients. Importantly, Dendrocalamus species are shown to be rich in TCC irrespective of the growing altitude while Bambusa species are found to have moderate level of TCC. The findings clearly demonstrated that Chimonobambusa callosa growing at high altitude represents safe edible bamboo species with nutritious attributes

    Data from: Unveiling the optimal parameters for cellulolytic characteristics of Talaromyces verruculosus SGMNPf3 and its secretory enzymes

    No full text
    AIMS: Elucidation of different physico-chemical parameters and the secretory enzymes released by Talaromyces verruculosus SGMNPf3 during cellulosic biomass degradation. METHODS AND RESULTS: We determined the optimal pH, temperature and time course parameters for the efficient degradation of different natural and commercial cellulosic substrates by T. verruculosus SGMNPf3, previously isolated from a forest soil. The optimal growth of the fungus and production of its cellulases were obtained when the culture condition was maintained at pH 3·3 and temperature 30°C. Activity of the crude cellulases was maximum at 60°C. Activity of cellulase enzymes produced on natural cellulose substrates was higher than that on commercial cellulose substrates. A continuous increase in cellulase activity at different time points indicated no apparent end product inhibition. This might be attributed to the high individual cellulases, notably β-glucosidase (316·1 μmol g(-1) ) production. Zymogram of extracellular crude proteins showed two dominant extracellular protein bands of molecular weight 72·3 and 61·4 kDa, indicating their cellulolytic nature. MALDI-TOF and LC-MS/MS analysis of the 2DE spots also identified several enzymes including β-glucosidase involved in the process of cellulose degradation. CONCLUSIONS: Based on its optimal parameters for cellulolytic activities, we suggest that the fungus is acido-mesophilic. There was apparently no end-product inhibition of the cellulase activity and this is attributed to the ability of the fungus to produce sufficient β-glucosidase. The dominant proteins secreted by the fungus were confirmed to be cellulases. SIGNIFICANCE AND IMPACT OF THE STUDY: The high individual cellulase activities, better cellulase production on natural substrates and apparent absence of end-product inhibition are characteristics of T. verruculosus SGMNPf3 for use in harvesting naturally endowed energy in cellulosic biomass
    corecore