73 research outputs found

    Neuronal Assembly Detection and Cell Membership Specification by Principal Component Analysis

    Get PDF
    In 1949, Donald Hebb postulated that assemblies of synchronously activated neurons are the elementary units of information processing in the brain. Despite being one of the most influential theories in neuroscience, Hebb's cell assembly hypothesis only started to become testable in the past two decades due to technological advances. However, while the technology for the simultaneous recording of large neuronal populations undergoes fast development, there is still a paucity of analytical methods that can properly detect and track the activity of cell assemblies. Here we describe a principal component-based method that is able to (1) identify all cell assemblies present in the neuronal population investigated, (2) determine the number of neurons involved in ensemble activity, (3) specify the precise identity of the neurons pertaining to each cell assembly, and (4) unravel the time course of the individual activity of multiple assemblies. Application of the method to multielectrode recordings of awake and behaving rats revealed that assemblies detected in the cerebral cortex and hippocampus typically contain overlapping neurons. The results indicate that the PCA method presented here is able to properly detect, track and specify neuronal assemblies, irrespective of overlapping membership

    Quantitative and spatial analysis of CD8+/PD-1 tumor-infiltrating lymphocytes as a predictive biomarker for clinical response of melanoma in-transit metastases to topical immunotherapy

    Get PDF
    Background: Melanoma in-transit metastases (ITMs) are a challenge to treat and associated with systemic disease and poor prognosis. Topical diphencyprone (DPCP), a potent contact sensitizer, is an established treatment for melanoma ITMs. This exploratory study investigated the utility of BRAF mutation status, CD8, PD-1, PD-L1, and TILs distribution as biomarkers for response of ITMs to topical immunotherapy (DPCP).  Methods: The ITM deposits of 40 patients treated with DPCP were subjected to biomarker analysis for BRAF status, CD8 and PD-1 expression on tumor-infiltrating lymphocytes (TILs), and tumor PD-L1 expression. Response to DPCP and overall survival (OS) were compared by biomarker status.  Results: After 12 weeks, 10 patients (25%) had a complete response, 12 patients (30%) had a partial response, and 18 patients (45%) had no response. No significant association was found between any individual biomarker and response to DPCP or OS. The BRAF mutation rate was 25% (10/40). All the patients with a complete response had BRAF wild-type tumor. Peritumoral CD8+ T-cells were associated with complete response (P = 0.041). Both CD8+ and PD-1 expressions were highly correlated (P < 0.0001), and the highest levels of PD-1 expression were detected at the peritumoral interface (P = 0.0004). Only two cases were PD-L1-positive, and both had a complete response to DPCP (P = 0.043).  Conclusion: Patients who have BRAF wild-type tumor are more likely to experience a complete response to DPCP. Peritumoral TILs and PD-1 expressions may predict a better response to DPCP. Expression of PD-L1 may be associated with a complete response to DPCP. A larger prospective study is required

    Influenza vaccination for immunocompromised patients: systematic review and meta-analysis from a public health policy perspective.

    Get PDF
    Immunocompromised patients are vulnerable to severe or complicated influenza infection. Vaccination is widely recommended for this group. This systematic review and meta-analysis assesses influenza vaccination for immunocompromised patients in terms of preventing influenza-like illness and laboratory confirmed influenza, serological response and adverse events

    Interrogation by toxin

    No full text
    corecore