4,547 research outputs found

    Proceedings of the Third Cryocooler Conference

    Get PDF
    Mechanical and non-mechanical types of small cryocoolers in the temperature range of 4 to 80 K are discussed. Applications of these small cryocoolers include the cooling of infrared detectors, cryopumps, small superconducting devices and magnets, and electronic devices

    Phonon-assisted optical absorption in silicon from first principles

    Full text link
    The phonon-assisted interband optical absorption spectrum of silicon is calculated at the quasiparticle level entirely from first principles. We make use of the Wannier interpolation formalism to determine the quasiparticle energies, as well as the optical transition and electron-phonon coupling matrix elements, on fine grids in the Brillouin zone. The calculated spectrum near the onset of indirect absorption is in very good agreement with experimental measurements for a range of temperatures. Moreover, our method can accurately determine the optical absorption spectrum of silicon in the visible range, an important process for optoelectronic and photovoltaic applications that cannot be addressed with simple models. The computational formalism is quite general and can be used to understand the phonon-assisted absorption processes in general

    Spin Polarization and Transport of Surface States in the Topological Insulators Bi2Se3 and Bi2Te3 from First Principles

    Full text link
    We investigate the band dispersion and the spin texture of topologically protected surface states in the bulk topological insulators Bi2Se3 and Bi2Te3 by first-principles methods. Strong spin-orbit entanglement in these materials reduces the spin-polarization of the surface states to ~50% in both cases; this reduction is absent in simple models but of important implications to essentially any spintronic application. We propose a way of controlling the magnitude of spin polarization associated with a charge current in thin films of topological insulators by means of an external electric field. The proposed dual-gate device configuration provides new possibilities for electrical control of spin.Comment: 4+ pages, 3 figure

    Excitonic Effects and Optical Spectra of Single-Walled Carbon Nanotubes

    Full text link
    Many-electron effects often dramatically modify the properties of reduced dimensional systems. We report calculations, based on an many-electron Green's function approach, of electron-hole interaction effects on the optical spectra of small-diameter single-walled carbon nanotubes. Excitonic effects qualitatively alter the optical spectra of both semiconducting and metallic tubes. Excitons are bound by ~ 1 eV in the semiconducting (8,0) tube and by ~ 100 meV in the metallic (3,3) tube. These large many-electron effects explain the discrepancies between previous theories and experiments.Comment: 6 pages, 3 figures, 2 table

    Engineering the Next Generation of Solid State Proton Conductors: Synthesis and Properties of Ba_(3−x)K_(x)H_(x)(PO_4)_2

    Get PDF
    A new series of compounds with general chemical formula Ba_(3−x)K_(x)H_(x)(PO_4)_2 has been successfully prepared. This particular stoichiometry was targeted as a candidate solid-state proton conductor because of its anticipated structural similarity to known M_(3)H(XO_4)_2 superprotonic conductors (M = Cs, Rb, NH4, K; X = Se, S) and to the known trigonal compound Ba_(3)(PO_4)_2. The materials were synthesized from aqueous solution using barium acetate, dipotassium hydrogen phosphate, and potassium hydroxide as starting materials. Through variations in the initial solution stoichiometry or the synthesis temperature, the final stoichiometry could be controlled from x ~ 0.5 to ~1. X-ray powder diffraction, energy dispersive spectroscopy chemical analysis, ^(1)H magic angle spinning (MAS) nuclear magnetic spectroscopy, and thermogravimetric analysis were all employed to establish potassium and proton incorporation. The diffraction data confirmed crystallization of a trigonal phase, and chemical analysis showed the (Ba+K):P ratio to be 3:2, consistent with the target stoichiometry. The conductivity of the Ba_(3−x)K_(x)H_(x)(PO_4)_2 materials, as measured by A.C. impedance spectroscopy, is about 3 orders of magnitude greater than the end-member Ba_(3)(PO_4)_2 material with only a slight dependence on x, however, it is substantially lower than that of typical superprotonic conductors and of the M_(3)H(XO_4)_2 materials in particular. The close proximity of Ba to the hydrogen bond site is proposed to explain this behavior. At 250 °C, the conductivity is 2.4 × 10^(−5) S/cm for the composition x = 0.80, which, when combined with the water insolubility and the relatively high thermal stability, may render Ba_(3−x)K_(x)H_(x)(PO_4)_2 an attractive alternative in selected electrochemical applications to known superprotonic conductors

    Harnessing Rural Radio for Climate Change Mitigation and Adaptation in the Philippines

    Get PDF
    The working paper documents the pilot rural radio campaign, dubbed as 'Climate Change i-Broadkas Mo', implemented by the CGIAR Research Program on Climate Change, Agriculture and Food Security in Southeast Asia (CCAFS SEA) and the Philippine Federation of Rural Broadcasters (PFRB)​ in strategic regions of the Philippines from 2015 to 2018. The radio campaign provided PFRB affiliated broadcasters with scripts and ready-to-be-aired (RTBA) interviews on climate-smart agriculture. The lessons learned from the project can be used to enhance the capacities of rural broadcasters on climate change reporting and to create a demand for radio-based distance learning, not only in Northern Philippines, but in similar regions in Southeast Asia
    • …
    corecore