17 research outputs found

    Molybdenum dioxide in carbon nanoreactors as a catalytic nanosponge for the efficient desulfurization of liquid fuels

    Get PDF
    The principle of a “catalytic nanosponge” that combines the catalysis of organosulfur oxidation and sequestration of the products from reaction mixtures is demonstrated. Group VI metal oxide nanoparticles (CrOx, MoOx, WOx) are embedded within hollow graphitized carbon nanofibers (GNFs), which act as nanoscale reaction vessels for oxidation reactions used in the decontamination of fuel. When immersed in a model liquid alkane fuel contaminated with organosulfur compounds (benzothiophene, dibenzothiophene, dimethyldibenzothiophene), it is found that MoO2@GNF nanoreactors, comprising 30 nm molybdenum dioxide nanoparticles grown within the channel of GNFs, show superior abilities toward oxidative desulfurization (ODS), affording over 98% sulfur removal at only 5.9 mol% catalyst loading. The role of the carbon nanoreactor in MoO2@GNF is to enhance the activity and stability of catalytic centers over at least 5 cycles. Surprisingly, the nanotube cavity can selectively absorb and remove the ODS products (sulfoxides and sulfones) from several model fuel systems. This effect is related to an adsorptive desulfurization (ADS) mechanism, which in combination with ODS within the same material, yields a “catalytic nanosponge” MoO2@GNF. This innovative ODS and ADS synergistic functionality negates the need for a solvent extraction step in fuel desulfurization and produces ultralow sulfur fuel

    Mapping the Transcriptome Underpinning Acute Corticosteroid Action within the Cortical Collecting Duct

    Get PDF
    Funding: British Heart Foundation (BHF): Research Excellence Award RE/13/3/30183; Kidney Research UK: Innovation Grant IN_001_201703 Postdoctoral Fellowship PDF_008_20151127; Scottish Funding Council (SFC): St Andrews Restarting Research Funding Scheme; Society for Endocrinology (SFE): Early Career Grant.We report the transcriptomes associated with acute corticosteroid regulation of ENaC activity in polarised mCCDcl1 collecting duct cells. 9 genes were regulated by aldosterone (ALDO), 0 with corticosterone alone and 151 with corticosterone when 11ÎČHSD2 activity was inhibited. We validated 3 novel ALDO-induced genes: Rasd1, Sult1d1 and Gm43305 in primary cells isolated from a novel collecting duct reporter mouse. Background Corticosteroids regulate distal nephron and collecting duct Na+ reabsorption, contributing to fluid-volume and blood pressure homeostasis. The transcriptional landscape underpinning the acute stimulation of the epithelial sodium channel (ENaC) by physiological concentrations of corticosteroids remains unclear. Methods Transcriptomic profiles underlying corticosteroid-stimulated ENaC activity in polarised mCCDcl1 cells were generated by coupling electrophysiological measurements of amiloride-sensitive currents with RNAseq. Generation of a collecting-duct specific reporter mouse line, mT/mG-Aqp2Cre, enabled isolation of primary collecting duct cells by FACS and ENaC activity was measured in cultured primary cells following acute application of corticosteroids. Expression of target genes was assessed by qRT-PCR in cultured cells or freshly isolated cells following acute elevation of steroid hormones in mT/mG-Aqp2Cre mice. Results Physiological relevance of the mCCDcl1 model was confirmed with aldosterone-specific stimulation of SGK1 and ENaC activity. Corticosterone only modulated these responses at supraphysiological concentrations or when 11ÎČHSD2 was inhibited. When 11ÎČHSD2 protection was intact, corticosterone caused no significant change in transcripts. We identified a small number of aldosterone-induced transcripts associated with stimulated ENaC activity in mCCDcl1 cells and a much larger number with corticosterone in the absence of 11ÎČHSD2 activity. Cells isolated from mT/mG-Aqp2Cre mice were validated as collecting duct-specific and assessment of identified aldosterone-induced genes revealed that Sgk1, Zbtbt16, Sult1d1, Rasd1 and Gm43305 are acutely upregulated by corticosteroids both in vitro and in vivo. Conclusions This study reports the transcriptome of mCCDcl1 collecting duct cells and identifies a small number of aldosterone-induced genes associated with acute stimulation of ENaC, including 3 previously undescribed genes.PostprintPeer reviewe

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Mapping the transcriptome underpinning acute corticosteroid action within the cortical collecting duct

    No full text
    We report the transcriptomes associated with acute corticosteroid regulation of ENaC activity in polarised mCCDcl1 collecting duct cells. 9 genes were regulated by aldosterone (ALDO), 0 with corticosterone alone and 151 with corticosterone when 11ÎČHSD2 activity was inhibited. We validated 3 novel ALDO-induced genes: Rasd1, Sult1d1 and Gm43305 in primary cells isolated from a novel collecting duct reporter mouse.Background Corticosteroids regulate distal nephron and collecting duct Na+ reabsorption, contributing to fluid-volume and blood pressure homeostasis. The transcriptional landscape underpinning the acute stimulation of the epithelial sodium channel (ENaC) by physiological concentrations of corticosteroids remains unclear. Methods Transcriptomic profiles underlying corticosteroid-stimulated ENaC activity in polarised mCCDcl1 cells were generated by coupling electrophysiological measurements of amiloride-sensitive currents with RNAseq. Generation of a collecting-duct specific reporter mouse line, mT/mG-Aqp2Cre, enabled isolation of primary collecting duct cells by FACS and ENaC activity was measured in cultured primary cells following acute application of corticosteroids. Expression of target genes was assessed by qRT-PCR in cultured cells or freshly isolated cells following acute elevation of steroid hormones in mT/mG-Aqp2Cre mice. Results Physiological relevance of the mCCDcl1 model was confirmed with aldosterone-specific stimulation of SGK1 and ENaC activity. Corticosterone only modulated these responses at supraphysiological concentrations or when 11ÎČHSD2 was inhibited. When 11ÎČHSD2 protection was intact, corticosterone caused no significant change in transcripts. We identified a small number of aldosterone-induced transcripts associated with stimulated ENaC activity in mCCDcl1 cells and a much larger number with corticosterone in the absence of 11ÎČHSD2 activity. Cells isolated from mT/mG-Aqp2Cre mice were validated as collecting duct-specific and assessment of identified aldosterone-induced genes revealed that Sgk1, Zbtbt16, Sult1d1, Rasd1 and Gm43305 are acutely upregulated by corticosteroids both in vitro and in vivo. Conclusions This study reports the transcriptome of mCCDcl1 collecting duct cells and identifies a small number of aldosterone-induced genes associated with acute stimulation of ENaC, including 3 previously undescribed genes

    Unlocking the Black Box: A Multilevel Analysis of Preadolescent Children’s Coping

    No full text
    This random assignment experimental study examined the intersection of children’s coping and physiologic stress reactivity and recovery patterns in a sample of preadolescent boys and girls. A sample of 82 fourth-grade and fifth-grade (Mage = 10.59 years old) child–parent dyads participated in the present study. Children participated in the Trier Social Stress Test and were randomly assigned to one of two post–Trier Social Stress Test experimental coping conditions—behavioral distraction or cognitive avoidance. Children’s characteristic ways of coping were examined as moderators of the effect of experimental coping condition on cortisol reactivity and recovery patterns. Multilevel modeling analyses indicated that children’s characteristic coping and experimental coping condition interacted to predict differential cortisol recovery patterns. Children who characteristically engaged in primary control engagement coping strategies were able to more quickly down-regulate salivary cortisol when primed to distract themselves than when primed to avoid, and vice versa. The opposite pattern was true for characteristic disengagement coping in the context of coping condition, suggesting that regulatory fit between children’s characteristic ways of coping and cues from their coping environment may lead to more and less adaptive physiologic recovery profiles. This study provides some of the first evidence that coping “gets under the skin” and that children’s characteristic ways of coping may constrain or enhance a child’s ability to make use of environmental coping resources
    corecore