363 research outputs found
Structural Transition Kinetics and Activated Behavior in the Superconducting Vortex Lattice
Using small-angle neutron scattering, we investigated the behavior of a
metastable vortex lattice state in MgB2 as it is driven towards equilibrium by
an AC magnetic field. This shows an activated behavior, where the AC field
amplitude and cycle count are equivalent to, respectively, an effective
"temperature" and "time". The activation barrier increases as the metastable
state is suppressed, corresponding to an aging of the vortex lattice.
Furthermore, we find a cross-over from a partial to a complete suppression of
metastable domains depending on the AC field amplitude, which may empirically
be described by a single free parameter. This represents a novel kind of
collective vortex behavior, most likely governed by the nucleation and growth
of equilibrium vortex lattice domains.Comment: 5 pages plus 3 pages of supplemental materia
High-energy environment of super-Earth 55 Cnc e I: Far-UV chromospheric variability as a possible tracer of planet-induced coronal rain
The irradiation of close-in planets by their star influences their evolution
and might be responsible for a population of ultra-short period planets eroded
to their bare core. In orbit around a bright, nearby G-type star, the
super-Earth 55 Cnc e offers the possibility to address these issues through UV
transit observations. We used the Hubble Space Telescope to observe the transit
in the FUV over 3 epochs in Apr. 2016, Jan. 2017, and Feb. 2017. These
observations reveal significant short- and long-term variability in 55 Cnc
chromospheric emission lines. In the last 2 epochs, we detected a larger flux
in the C III, Si III, and Si IV lines after the planet passed the approaching
quadrature, followed by a flux decrease in the Si IV doublet. In the second
epoch these variations are contemporaneous with flux decreases in the Si II and
C II doublet. All epochs show flux decreases in the N V doublet as well, albeit
at different orbital phases. These flux decreases are consistent with
absorption from optically thin clouds of gas, are mostly localized at low and
redshifted radial velocities in the star rest frame, and occur preferentially
before and during the transit. These 3 points make it unlikely that the
variations are purely stellar, yet we show that the occulting material is also
unlikely to originate from the planet. We tentatively propose that the motion
of 55 Cnc e at the fringes of the stellar corona leads to the formation of a
cool coronal rain. The inhomogeneity and temporal evolution of the stellar
corona would be responsible for the differences between the visits. Additional
variations are detected in the C II doublet in the first epoch and in the O I
triplet in all epochs with a different behavior that points toward intrinsic
stellar variability. Further observations at FUV wavelengths are required to
disentangle between star-planet interactions and the activity of the starComment: 22 pages, 20 figures, accepted for publication in A&
Precision study of 6p 2Pj - 8s 2S1/2 relative transition matrix elements in atomic Cs
A combined experimental and theoretical study of transition matrix elements
of the 6p 2Pj - 8s 2S1/2 transition in atomic Cs is reported. Measurements of
the polarization-dependent two-photon excitation spectrum associated with the
transition were made in an approximately 200 cm-1 range on the low frequency
side of the 6s 2S1/2 - 6p 2P3/2 resonance. The measurements depend
parametrically on the relative transition matrix elements, but also are
sensitive to far-off-resonance 6s 2S1/2 - np 2Pj - 8s 2S1/2 transitions. In the
past, this dependence has yielded a generalized sum rule, the value of which is
dependent on sums of relative two-photon transition matrix elements. In the
present case, best available determinations from other experiments are combined
with theoretical matrix elements to extract the ratio of transition matrix
elements for the 6p 2Pj - 8s 2S1/2 (j = 1/2,3/2) transition. The resulting
experimental value of 1.423(2) is in excellent agreement with the theoretical
value, calculated using a relativistic all-order method, of 1.425(2)
Structural studies of metastable and equilibrium vortex lattice domains in MgB2
The vortex lattice in MgB2 is characterized by the presence of long-lived
metastable states, which arise from cooling or heating across the equilibrium
phase boundaries. A return to the equilibrium configuration can be achieved by
inducing vortex motion. Here we report on small-angle neutron scattering
studies of MgB2, focusing on the structural properties of the vortex lattice as
it is gradually driven from metastable to equilibrium states by an AC magnetic
field. Measurements were performed using initial metastable states obtained
either by cooling or heating across the equilibrium phase transition. In all
cases, the longitudinal correlation length remains constant and comparable to
the sample thickness. Correspondingly, the vortex lattice may be considered as
a system of straight rods, where the formation and growth of equilibrium state
domains only occurs in the two-dimensional plane perpendicular to the applied
field direction. Spatially resolved raster scans of the sample were performed
with apertures as small as 80 microns, corresponding to only 1.2*10^6 vortices
for an applied field of 0.5 T. These revealed spatial variations in the
metastable and equilibrium vortex lattice populations, but individual domains
were not directly resolved. A statistical analysis of the data indicates an
upper limit on the average domain size of approximately 50 microns.Comment: 13 pages, 9 figure
MOVES III. Simultaneous X-ray and ultraviolet observations unveiling the variable environment of the hot Jupiter HD 189733b
Funding: European Research Council (ERC) under the European Unionâs Horizon 2020 research and innovation programme (project Four Aces; grant agreement No. 724427) (VB). UK Science and Technology Facilities Council (STFC) under the consolidated grants ST/L000733/1 and ST/P000495/1 (PJW, GK, and TL).In this third paper of the MOVES (Multiwavelength Observations of an eVaporating Exoplanet and its Star) programme, we combine Hubble Space Telescope far-ultraviolet (FUV) observations with XMMâNewton/Swift X-ray observations to measure the emission of HDâ189733 in various FUV lines, and its soft X-ray spectrum. Based on these measurements we characterize the interstellar medium towards HDâ189733 and derive semisynthetic XUV spectra of the star, which are used to study the evolution of its high-energy emission at five different epochs. Two flares from HDâ189733 are observed, but we propose that the long-term variations in its spectral energy distribution have the most important consequences for the environment of HDâ189733b. Reduced coronal and wind activity could favour the formation of a dense population of Si2+ atoms in a bow-shock ahead of the planet, responsible for pre- and in-transit absorption measured in the first two epochs. In-transit absorption signatures are detected in the Lymanâα line in the second, third, and fifth epochs, which could arise from the extended planetary thermosphere and a tail of stellar wind protons neutralized via charge-exchange with the planetary exosphere. We propose that increases in the X-ray irradiation of the planet, and decreases in its EUV irradiation causing lower photoionization rates of neutral hydrogen, favour the detection of these signatures by sustaining larger densities of H0 atoms in the upper atmosphere and boosting charge-exchanges with the stellar wind. Deeper and broader absorption signatures in the last epoch suggest that the planet entered a different evaporation regime, providing clues as to the link between stellar activity and the structure of the planetary environment.Publisher PDFPeer reviewe
Single transit candidates from K2 : detection and period estimation
Photometric surveys such as Kepler have the precision to identify exoplanet and eclipsing binary candidates from only a single transit. K2, with its 75 d campaign duration, is ideally suited to detect significant numbers of single-eclipsing objects. Here we develop a Bayesian transit-fitting tool (âNamaste: An Mcmc Analysis of Single Transit Exoplanetsâ) to extract orbital information from single transit events. We achieve favourable results testing this technique on known Kepler planets, and apply the technique to seven candidates identified from a targeted search of K2 campaigns 1, 2 and 3. We find EPIC203311200 to host an excellent exoplanet candidate with a period, assuming zero eccentricity, of 540+410 â230 d and a radius of 0.51 ± 0.05RJup. We also find six further transit candidates for which more follow-up is required to determine a planetary origin. Such a technique could be used in the future with TESS, PLATO and ground-based photometric surveys such as NGTS, potentially allowing the detection of planets in reach of confirmation by Gaia
MOVES â I. The evolving magnetic field of the planet-hosting star HD189733
HD189733 is an active K dwarf that is, with its transiting hot Jupiter, among the most studied exoplanetary systems. In this first paper of the Multiwavelength Observations of an eVaporating Exoplanet and its Star (MOVES) programme, we present a 2-yr monitoring of the large-scale magnetic field of HD189733. The magnetic maps are reconstructed for five epochs of observations, namely 2013 JuneâJuly, 2013 August, 2013 September, 2014 September and 2015 July, using ZeemanâDoppler imaging. We show that the field evolves along the five epochs, with mean values of the total magnetic field of 36, 41, 42, 32 and 37 G, respectively. All epochs show a toroidally dominated field. Using previously published data of Moutou et al. and Fares et al., we are able to study the evolution of the magnetic field over 9 yr, one of the longest monitoring campaigns for a given star. While the field evolved during the observed epochs, no polarity switch of the poles was observed. We calculate the stellar magnetic field value at the position of the planet using the potential field source surface extrapolation technique. We show that the planetary magnetic environment is not homogeneous over the orbit, and that it varies between observing epochs, due to the evolution of the stellar magnetic field. This result underlines the importance of contemporaneous multiwavelength observations to characterize exoplanetary systems. Our reconstructed maps are a crucial input for the interpretation and modelling of our MOVES multiwavelength observations.Publisher PDFPeer reviewe
- âŠ