11,923 research outputs found
An Imaging and Spectral Study of Ten X-Ray Filaments around the Galactic Center
We report the detection of 10 new X-ray filaments using the data from the
{\sl Chandra} X-ray satellite for the inner ( parsec)
around the Galactic center (GC). All these X-ray filaments are characterized by
non-thermal energy spectra, and most of them have point-like features at their
heads that point inward. Fitted with the simple absorbed power-law model, the
measured X-ray flux from an individual filament in the 2-10 keV band is to ergs cm s and the
absorption-corrected X-ray luminosity is ergs s
at a presumed distance of 8 kpc to the GC. We speculate the origin(s) of these
filaments by morphologies and by comparing their X-ray images with the
corresponding radio and infrared images. On the basis of combined information
available, we suspect that these X-ray filaments might be pulsar wind nebulae
(PWNe) associated with pulsars of age yr. The fact
that most of the filament tails point outward may further suggest a high
velocity wind blowing away form the GC.Comment: 29 pages with 7 figures and 3 pages included. Accepted to Ap
Envelope Expansion with Core Collapse. III. Similarity Isothermal Shocks in a Magnetofluid
We explore MHD solutions for envelope expansions with core collapse (EECC)
with isothermal MHD shocks in a quasi-spherical symmetry and outline potential
astrophysical applications of such magnetized shock flows. MHD shock solutions
are classified into three classes according to the downstream characteristics
near the core. Class I solutions are those characterized by free-fall collapses
towards the core downstream of an MHD shock, while Class II solutions are those
characterized by Larson-Penston (LP) type near the core downstream of an MHD
shock. Class III solutions are novel, sharing both features of Class I and II
solutions with the presence of a sufficiently strong magnetic field as a
prerequisite. Various MHD processes may occur within the regime of these
isothermal MHD shock similarity solutions, such as sub-magnetosonic
oscillations, free-fall core collapses, radial contractions and expansions. We
can also construct families of twin MHD shock solutions as well as an
`isothermal MHD shock' separating two magnetofluid regions of two different yet
constant temperatures. The versatile behaviours of such MHD shock solutions may
be utilized to model a wide range of astrophysical problems, including star
formation in magnetized molecular clouds, MHD link between the asymptotic giant
branch phase to the proto-planetary nebula phase with a hot central magnetized
white dwarf, relativistic MHD pulsar winds in supernova remnants, radio
afterglows of soft gamma-ray repeaters and so forth.Comment: 21 pages, 33 figures, accepted by MNRA
Coupled KdV equations derived from atmospherical dynamics
Some types of coupled Korteweg de-Vries (KdV) equations are derived from an
atmospheric dynamical system. In the derivation procedure, an unreasonable
-average trick (which is usually adopted in literature) is removed. The
derived models are classified via Painlev\'e test. Three types of
-function solutions and multiple soliton solutions of the models are
explicitly given by means of the exact solutions of the usual KdV equation. It
is also interesting that for a non-Painlev\'e integrable coupled KdV system
there may be multiple soliton solutions.Comment: 19 pages, 2 figure
Global axisymmetric stability analysis for a composite system of two gravitationally coupled scale-free discs
In a composite system of gravitationally coupled stellar and gaseous discs,
we perform linear stability analysis for axisymmetric coplanar perturbations
using the two-fluid formalism. The background stellar and gaseous discs are
taken to be scale-free with all physical variables varying as powers of
cylindrical radius with compatible exponents. The unstable modes set in as
neutral modes or stationary perturbation configurations with angular frequency
.Comment: 7 pages using AAS styl
Phase Separation of Bismuth Ferrite into Magnetite under Voltage Stressing
Micro-Raman studies show that under ~700 kV/cm of d.c. voltage stressing for
a few seconds, thin-film bismuth ferrite BiFeO3 phase separates into magnetite
Fe3O4. No evidence is found spectroscopically of hemite alpha-Fe2O3, maghemite
gamma-Fe2O3, or of Bi2O3. This relates to the controversy regarding the
magnitude of magnetization in BiFeO3.Comment: 9 pages and 2 figure
Determination of Wave Function Functionals: The Constrained-Search--Variational Method
In a recent paper [Phys. Rev. Lett. \textbf{93}, 130401 (2004)], we proposed
the idea of expanding the space of variations in variational calculations of
the energy by considering the approximate wave function to be a
functional of functions rather than a function. The
space of variations is expanded because a search over the functions can
in principle lead to the true wave function. As the space of such variations is
large, we proposed the constrained-search-- variational method whereby a
constrained search is first performed over all functions such that the
wave function functional satisfies a physical constraint such as
normalization or the Fermi-Coulomb hole sum rule, or leads to the known value
of an observable such as the diamagnetic susceptibility, nuclear magnetic
constant or Fermi contact term. A rigorous upper bound to the energy is then
obtained by application of the variational principle. A key attribute of the
method is that the wave function functional is accurate throughout space, in
contrast to the standard variational method for which the wave function is
accurate only in those regions of space contributing principally to the energy.
In this paper we generalize the equations of the method to the determination of
arbitrary Hermitian single-particle operators as applied to two-electron atomic
and ionic systems. The description is general and applicable to both ground and
excited states. A discussion on excited states in conjunction with the theorem
of Theophilou is provided.Comment: 26 pages, 4 figures, 5 table
Recommended from our members
Electron quantum interference in epitaxial antiferromagnetic NiO thin films
The electron reflectivity from NiO thin films grown on Ag(001) has been systematically studied as a function of film thickness and electron energy. A strong electron quantum interference effect was observed from the NiO film, which is used to derive the unoccupied band dispersion above the Fermi surface along the Γ-X direction using the phase accumulation model. The experimental bands agree well with first-principles calculations. A weaker electron quantum interference effect was also observed from the CoO film
model and Higgs mass in standard model calculated by Gaussian effective potential approach with a new regularization-renormalization method
Basing on new regularization-renormalization method, the
model used in standard model is studied both perturbatively and
nonperturbatively (by Gaussian effective potential). The invariant property of
two mass scales is stressed and the existence of a (Landau) pole is emphasized.
Then after coupling with the SU(2)U(1) gauge fields, the Higgs mass in
standard model (SM) can be calculated as 138GeV. The critical
temperature () for restoration of symmetry of Higgs field, the critical
energy scale (, the maximum energy scale under which the lower
excitation sector of the GEP is valid) and the maximum energy scale
(, at which the symmetry of the Higgs field is restored) in the
standard model are 476 GeV, GeV
and GeVv respectively.Comment: 12 pages, LaTex, no figur
Determination of a Wave Function Functional
In this paper we propose the idea of expanding the space of variations in
standard variational calculations for the energy by considering the wave
function to be a functional of a set of functions , rather than a function. In this manner a greater flexibility to
the structure of the wave function is achieved. A constrained search in a
subspace over all functions such that the wave function functional
satisfies a constraint such as normalization or the Fermi-Coulomb
hole charge sum rule, or the requirement that it lead to a physical observable
such as the density, diamagnetic susceptibility, etc. is then performed. A
rigorous upper bound to the energy is subsequently obtained by variational
minimization with respect to the parameters in the approximate wave function
functional. Hence, the terminology, the constrained-search variational method.
The \emph{rigorous} construction of such a constrained-search--variational wave
function functional is demonstrated by example of the ground state of the
Helium atom.Comment: 10 pages, 2 figures, changes made, references adde
- …