research

λϕ4\lambda\phi^4 model and Higgs mass in standard model calculated by Gaussian effective potential approach with a new regularization-renormalization method

Abstract

Basing on new regularization-renormalization method, the λϕ4\lambda\phi^4 model used in standard model is studied both perturbatively and nonperturbatively (by Gaussian effective potential). The invariant property of two mass scales is stressed and the existence of a (Landau) pole is emphasized. Then after coupling with the SU(2)×\timesU(1) gauge fields, the Higgs mass in standard model (SM) can be calculated as mHm_H\approx138GeV. The critical temperature (TcT_c) for restoration of symmetry of Higgs field, the critical energy scale (μc\mu_c, the maximum energy scale under which the lower excitation sector of the GEP is valid) and the maximum energy scale (μmax\mu_{max}, at which the symmetry of the Higgs field is restored) in the standard model are TcT_c\approx476 GeV, μc0.547×1015\mu_c\approx 0.547\times 10^{15}GeV and μmax0.873×1015\mu_{\max}\approx 0.873 \times 10^{15} GeVv respectively.Comment: 12 pages, LaTex, no figur

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020