60 research outputs found

    Intestinal PTGS2 mRNA Levels, PTGS2 Gene Polymorphisms, and Colorectal Carcinogenesis

    Get PDF
    <div><p>Background & Aims</p><p>Inflammation is a major risk factor for development of colorectal cancer (CRC). Prostaglandin synthase cyclooxygenase-2 (COX-2) encoded by the <i>PTGS2</i> gene is the rate limiting enzyme in prostaglandin synthesis and therefore plays a distinct role as regulator of inflammation.</p><p>Methods</p><p><i>PTGS2</i> mRNA levels were determined in intestinal tissues from 85 intestinal adenoma cases, 115 CRC cases, and 17 healthy controls. The functional <i>PTGS2</i> polymorphisms A-1195G (rs689466), G-765C (rs20417), T8473C (rs5275) were assessed in 200 CRC cases, 991 adenoma cases and 399 controls from the Norwegian KAM cohort.</p><p>Results</p><p><i>PTGS2</i> mRNA levels were higher in mild/moderate adenoma tissue compared to morphologically normal tissue from the same individual (P<0.0001) and (P<0.035) and compared to mucosa from healthy individuals (P<0.0039) and (P<0.0027), respectively. In CRC patients, <i>PTGS2</i> mRNA levels were 8–9 times higher both in morphologically normal tissue and in cancer tissue, compared to healthy individuals (P<0.0001). <i>PTGS2</i> A-1195G variant allele carriers were at reduced risk of CRC (odds ratio (OR) = 0.52, 95% confidence interval (95% CI): 0.28–0.99, P = 0.047). Homozygous carriers of the haplotype encompassing the A-1195G and G-765C wild type alleles and the T8473C variant allele <i>(PTGS2</i> AGC) were at increased risk of CRC as compared to homozygous carriers of the <i>PTGS2</i> AGT (<u>A</u>-1195G, <u>G</u>-765C, <u>T</u>8473C) haplotype (OR = 5.37, 95% CI: 1.40–20.5, P = 0.014). No association between the investigated polymorphisms and <i>PTGS2</i> mRNA levels could be detected.</p><p>Conclusion</p><p>High intestinal <i>PTGS2</i> mRNA level is an early event in colorectal cancer development as it occurs already in mild/moderate dysplasia. <i>PTGS2</i> polymorphisms that have been associated with altered <i>PTGS2</i> mRNA levels/COX-2 activity in some studies, although not the present study, were associated with colorectal cancer risk. Thus, both <i>PTGS2</i> polymorphisms and <i>PTGS2</i> mRNA levels may provide information regarding CRC risk.</p></div

    Mutation Spectrum in Liquid Versus Solid Biopsies From Patients With Advanced Gastroenteropancreatic Neuroendocrine Carcinoma.

    Get PDF
    PURPOSE Gastroenteropancreatic neuroendocrine carcinomas (GEP-NEC) are rare and have a poor prognosis. Most GEP-NEC are diagnosed with metastatic disease, with only minor biopsies available for molecular diagnostics. We assessed the applicability of liquid biopsies for molecular profiling of GEP-NEC. MATERIALS AND METHODS We performed massive parallel sequencing of 76 cancer-related genes in circulating tumor DNA from 50 patients with advanced GEP-NEC and compared findings to previous analyses of solid tumor biopsies from the same patients. Plasma samples were collected before therapy, and the median time span between blood and tissue sampling was 25 days. RESULTS We detected 178 somatic mutations in the liquid biopsies, 127 (71%) were also detected in the solid biopsies, whereas 51 (29%) were unique to the liquid biopsies. In the same 76 genes, we previously detected 199 somatic mutations (single nucleotide variants) in solid biopsies, of which 127 (64%) were also now detected in liquid biopsies. In exploratory subgroup assessments, concordance was higher in patients with liver metastases (P = 1.5 × 10-5) and increasing with level of liver involvement (P = 1.2 × 10-4). The concordance was similar between GEP-NEC with different primary sites, except being lower in esophageal cases (P = .001). Concordance was not associated with tumor mutation burden. Tumor tissue mutations also detected in liquid biopsies was lower for MSI (40%) versus MSS tumors (70%; P = 7.8 × 10-4). We identified potentially targetable mutations in plasma of 26 (52%) of patients with GEP-NEC; nine patients (18%) had potentially targetable mutation detected only in liquid biopsies. CONCLUSION Liquid biopsy analyses may be an applicable alternative to solid biopsies in GEP-NEC. Liquid biopsies may add additional mutations compared with tumor biopsies alone and could be useful for biomarker assessment in clinical trials for these patients

    Current clinical criteria for Lynch syndrome are not sensitive enough to identify MSH6 mutation carriers

    Get PDF
    Background: Reported prevalence, penetrance and expression of deleterious mutations in the mismatch repair (MMR) genes, MLH1, MSH2, MSH6 and PMS2, may reflect differences in the clinical criteria used to select families for DNA testing. The authors have previously reported that clinical criteria are not sensitive enough to identify MMR mutation carriers among incident colorectal cancer cases. Objective: To describe the sensitivity of the criteria when applied to families with a demonstrated MMR mutation. Methods: Families with an aggregation of colorectal cancers were examined for deleterious MMR mutations according to the Mallorca guidelines. All families with a detected MMR mutation as of November 2009 were reclassified according to the Amsterdam and Bethesda criteria. Results: Sixty-nine different DNA variants were identified in a total of 129 families. The original Amsterdam clinical criteria were met by 38%, 12%, 78% and 25% of families with mutations in MSH2, MSH6, MLH1 and PMS2, respectively. Corresponding numbers for the revised Amsterdam criteria were 62%, 48%, 87% and 38%. Similarly, each of the four clinical Bethesda criteria had low sensitivity for identifying MSH6 or PMS2 mutations. Conclusion: Amsterdam criteria and each of the Bethesda criteria were inadequate for identifying MSH6 mutation-carrying kindreds. MSH6 mutations may be more common than currently assumed, and the penetrance/expression of MSH6 mutations, as derived from families meeting current clinical criteria, may be misleading. To increase detection rate of MMR mutation carriers, all cancers in the Lynch syndrome tumour spectrum should be subjected to immunohistochemical analysis and/or analysis for microsatellite instability

    Germline pathogenic variants in patients with high-grade gastroenteropancreatic neuroendocrine neoplasms.

    Get PDF
    High-grade gastroenteropancreatic (HG-GEP) NEN are highly aggressive cancers. The molecular etiology of these tumors remains unclear and the prevalence of pathogenic germline variants in patients with HG-GEP-NEN is unknown. We assessed sequencing data of 360 cancer genes in normal tissue, from 240 patients with HG GEP-NEN; 198 patients with NEC and 42 with NET G3. Applying strict criteria, we identified pathogenic germline variants and compared the frequency with previously reported data from 33 different cancer types. We found a recurrent MYOC variant in 3 patients and a recurrent MUTYH variant in 2 patients, indicating that these genes may be important underlying risk factors for HG-GEP-NEN, when mutated. Further, germline variants were found in canonical tumor suppressor genes, such as TP53, RB1, BRIP1 and BAP1. Overall, we found that 4.5% of patients with NEC and 9.5% of patients with NET G3 carry germline pathogenic or highly likely pathogenic variants. Applying identical criteria for variant classification in-silico to mined data from 33 other cancer types, the median percentage of patients carrying pathogenic or highly likely pathogenic variants was 3.4% (range: 0-17%). The patients with NEC and pathogenic germline variants had a median overall survival of 9 months, similar to what is generally expected for metastatic GEP-NEC. A patient with NET G3 and pathogenic MUTYH variant had much shorter overall survival than expected. The fraction of HG GEP-NEN with germline pathogenic variants is relatively high, but still <10%, meaning that that germline mutations cannot be the major underlying cause of HG GEP-NEN

    Collagen mRNA levels changes during colorectal cancer carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasive growth of epithelial cancers is a complex multi-step process which involves dissolution of the basement membrane. Type IV collagen is a major component in most basement membranes. Type VII collagen is related to anchoring fibrils and is found primarily in the basement membrane zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different α(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of <it>type IV collagen (α1/α4/α6) </it>and <it>type VII collagen (α1) </it>during colorectal cancer carcinogenesis.</p> <p>Methods</p> <p>Using quantitative RT-PCR, we have determined the mRNA levels for <it>α1(IV), α4(IV), α6(IV), and α1(VII) </it>in colorectal cancer tissue (n = 33), adenomas (n = 29) and in normal tissue from the same individuals. In addition, corresponding tissue was examined from healthy volunteers (n = 20). mRNA levels were normalized to <it>β-actin</it>. Immunohistochemical analysis of the distributions of type IV and type VII collagens were performed on normal and affected tissues from colorectal cancer patients.</p> <p>Results</p> <p>The <it>α1(IV) </it>and <it>α1(VII) </it>mRNA levels were statistically significantly higher in colorectal cancer tissue (p < 0.001) as compared to corresponding tissue from healthy controls. This is an early event as tissue from adenomas also displayed a higher level. There were small changes in the levels of <it>α4(IV)</it>. The level of <it>α6(IV) </it>was 5-fold lower in colorectal cancer tissue as compared to healthy individuals (p < 0.01). The localisation of type IV and type VII collagen was visualized by immunohistochemical staining.</p> <p>Conclusion</p> <p>Our results suggest that the down-regulation of <it>α6(IV</it>) mRNA coincides with the acquisition of invasive growth properties, whereas <it>α1(IV) </it>and <it>α1(VII) </it>mRNAs were up-regulated already in dysplastic tissue. There are no differences in collagen expression between tissues from healthy individuals and normal tissues from affected individuals.</p

    Expression of NDRG2 is down-regulated in high-risk adenomas and colorectal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has recently been shown that <it>NDRG2 </it>mRNA is down-regulated or undetectable in several human cancers and cancer cell-lines. Although the function of NDRG2 is unknown, high <it>NDRG2 </it>expression correlates with improved prognosis in high-grade gliomas. The aim of this study has been to examine <it>NDRG2 </it>mRNA expression in colon cancer. By examining affected and normal tissue from individuals with colorectal adenomas and carcinomas, as well as in healthy individuals, we aim to determine whether and at which stages <it>NDRG2 </it>down-regulation occurs during colonic carcinogenesis.</p> <p>Methods</p> <p>Using quantitative RT-PCR, we have determined the mRNA levels for <it>NDRG2 </it>in low-risk (n = 15) and high-risk adenomas (n = 57), colorectal carcinomas (n = 50) and corresponding normal tissue, as well as control tissue from healthy individuals (n = 15). <it>NDRG2 </it>levels were normalised to <it>β-actin</it>.</p> <p>Results</p> <p><it>NDRG2 </it>mRNA levels were lower in colorectal carcinomas compared to normal tissue from the control group (p < 0.001). When comparing adenomas/carcinomas with adjacent normal tissue from the same individual, <it>NDRG2 </it>expression levels were significantly reduced in both high-risk adenoma (p < 0.001) and in colorectal carcinoma (p < 0.001). There was a trend for <it>NDRG2 </it>levels to decrease with increasing Dukes' stage (p < 0.05).</p> <p>Conclusion</p> <p>Our results demonstrate that expression of <it>NDRG2 </it>is down-regulated at a late stage during colorectal carcinogensis. Future studies are needed to address whether <it>NDRG2 </it>down-regulation is a cause or consequence of the progression of colorectal adenomas to carcinoma.</p

    Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study

    Get PDF
    BACKGROUND: Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of developing cancer. For colorectal cancer the importance of mutations in mismatch repair genes has been extensively documented. Less is known about other DNA repair pathways in colorectal carcinogenesis. In this study we have focused on the XRCC1, XRCC3 and XPD genes, involved in base excision repair, homologous recombinational repair and nucleotide excision repair, respectively. METHODS: We used a case-control study design (157 carcinomas, 983 adenomas and 399 controls) to test the association between five polymorphisms in these DNA repair genes (XRCC1 Arg(194)Trp, Arg(280)His, Arg(399)Gln, XRCC3 Thr(241)Met and XPD Lys(751)Gln), and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR) and 95% confidence interval (95% CI) were estimated by binary logistic regression model adjusting for age, gender, cigarette smoking and alcohol consumption. RESULTS: The XRCC1 280His allele was associated with an increased risk of adenomas (OR 2.30, 95% CI 1.19–4.46). The XRCC1 399Gln allele was associated with a reduction of risk of high-risk adenomas (OR 0.62, 95% CI 0.41–0.96). Carriers of the variant XPD 751Gln allele had an increased risk of low-risk adenomas (OR 1.40, 95% CI 1.03–1.89), while no association was found with risk of carcinomas. CONCLUSION: Our results suggest an increased risk for advanced colorectal neoplasia in individuals with the XRCC1 Arg(280)His polymorphism and a reduced risk associated with the XRCC1 Arg(399)Gln polymorphism. Interestingly, individuals with the XPD Lys(751)Gln polymorphism had an increased risk of low-risk adenomas. This may suggest a role in regression of adenomas

    The level of claudin-7 is reduced as an early event in colorectal carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Compromised epithelial barriers are found in dysplastic tissue of the gastrointestinal tract. Claudins are transmembrane proteins important for tight junctions. Claudins regulate the paracellular transport and are crucial for maintaining a functional epithelial barrier. Down-regulation of the oncogenic serine protease, matriptase, induces leakiness in epithelial barriers both <it>in vivo </it>and <it>in vitro</it>. We found in an <it>in-silico </it>search tight co-regulation between <it>matriptase </it>and <it>claudin-7 </it>expression. We have previously shown that the <it>matriptase </it>expression level decreases during colorectal carcinogenesis. In the present study we investigated whether <it>claudin-7 </it>expression is likewise decreased during colorectal carcinogenesis, thereby causing or contributing to the compromised epithelial leakiness of dysplastic tissue.</p> <p>Methods</p> <p>The mRNA level of <it>claudin-7 </it>(CLDN7) was determined in samples from 18 healthy individuals, 100 individuals with dysplasia and 121 colorectal cancer patients using quantitative real time RT-PCR. In addition, immunohistochemical stainings were performed on colorectal adenomas and carcinomas, to confirm the mRNA findings.</p> <p>Results</p> <p>A 2.7-fold reduction in the <it>claudin-7 </it>mRNA level was found when comparing the biopsies from healthy individuals with the biopsies of carcinomas (p < 0.001). Reductions in the <it>claudin-7 </it>mRNA levels were also detected in mild/moderate dysplasia (p < 0.001), severe dysplasia (p < 0.01) and carcinomas (p < 0.01), compared to a control sample from the same individual. The decrease at mRNA level was confirmed at the protein level by immunohistochemical stainings.</p> <p>Conclusions</p> <p>Our results show that the <it>claudin-7 </it>mRNA level is decreased already as an early event in colorectal carcinogenesis, probably contributing to the compromised epithelial barrier in adenomas.</p

    Expression of prostasin and its inhibitors during colorectal cancer carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials where cancer patients were treated with protease inhibitors have suggested that the serine protease, prostasin, may act as a tumour suppressor. Prostasin is proteolytically activated by the serine protease, matriptase, which has a very high oncogenic potential. Prostasin is inhibited by protease nexin-1 (PN-1) and the two isoforms encoded by the mRNA splice variants of <it>hepatocyte growth factor activator inhibitor-1 </it>(<it>HAI-1</it>), <it>HAI-1A</it>, and <it>HAI-1B</it>.</p> <p>Methods</p> <p>Using quantitative RT-PCR, we have determined the mRNA levels for <it>prostasin </it>and <it>PN-1 </it>in colorectal cancer tissue (n = 116), severe dysplasia (n = 13), mild/moderate dysplasia (n = 93), and in normal tissue from the same individuals. In addition, corresponding tissues were examined from healthy volunteers (n = 23). A part of the cohort was further analysed for the mRNA levels of the two variants of HAI-1, here denoted <it>HAI-1A </it>and <it>HAI-1B</it>. mRNA levels were normalised to <it>β-actin</it>. Immunohistochemical analysis of prostasin and HAI-1 was performed on normal and cancer tissue.</p> <p>Results</p> <p>The mRNA level of prostasin was slightly but significantly decreased in both mild/moderate dysplasia (p < 0.001) and severe dysplasia (p < 0.01) and in carcinomas (p < 0.05) compared to normal tissue from the same individual. The mRNA level of <it>PN-1 </it>was more that two-fold elevated in colorectal cancer tissue as compared to healthy individuals (p < 0.001) and elevated in both mild/moderate dysplasia (p < 0.01), severe dysplasia (p < 0.05) and in colorectal cancer tissue (p < 0.001) as compared to normal tissue from the same individual. The mRNA levels of <it>HAI-1A </it>and <it>HAI-1B </it>mRNAs showed the same patterns of expression. Immunohistochemistry showed that prostasin is located mainly on the apical plasma membrane in normal colorectal tissue. A large variation was found in the degree of polarization of prostasin in colorectal cancer tissue.</p> <p>Conclusion</p> <p>These results show that the mRNA level of <it>PN-1 </it>is significantly elevated in colorectal cancer tissue. Future studies are required to clarify whether down-regulation of prostasin activity via up regulation of PN-1 is causing the malignant progression or if it is a consequence of it.</p

    Association between cigarette smoking, <it>APC </it>mutations and the risk of developing sporadic colorectal adenomas and carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between colorectal cancer (CRC) and smoking has not been consistent. Incomplete smoking history and association to a specific subset of CRC tumors have been proposed as explanations. The adenomatous polyposis coli (<it>APC</it>) gene has been reported to have a "gatekeeper" function in the colonic mucosa.</p> <p>Methods</p> <p>To evaluate the hypothesis that cigarette smoking is associated with adenoma and carcinoma development and further to investigate whether this association is due to mutations in the <it>APC </it>gene, we used a study population consisting of 133 cases (45 adenomas and 88 carcinomas) and 334 controls. All tumors were sequenced in the mutation cluster region (MCR) of the <it>APC </it>gene. Cases and controls were drawn from a homogeneous cohort of Norwegian origin.</p> <p>Results</p> <p>The mutational spectra of the <it>APC </it>gene revealed no difference in frequencies of mutations in cases based on ever and never smoking status. An overall case-control association was detected for adenomas and "ever smoking" OR = 1.73 (95% CI 0.83–3.58). For CRC cases several smoking parameters for dose and duration were used. We detected an association for all smoking parameters and "duration of smoking > 30 years", yielded a statistically significant OR = 2.86 (1.06–7.7). When cases were divided based on <it>APC </it>truncation mutation status, an association was detected in adenomas without <it>APC </it>mutation in relation to "ever smoking", with an OR = 3.97 (1.26–12.51). For CRC cases without <it>APC </it>mutation "duration of smoking > 30 years", yielded a statistically significant OR = 4.06 (1.20–13.7). The smoking parameter "starting smoking ≥ 40 years ago" was only associated with CRC cases with <it>APC </it>mutations, OR = 2.0 (0.34–11.95). A case-case comparison revealed similar findings for this parameter, OR = 2.24 (0.73–6.86).</p> <p>Conclusion</p> <p>Our data suggest an association between smoking and adenoma and CRC development. This association was strongest for cases without <it>APC </it>truncation mutation. This may implicate other factors in development of these tumors. The association detected between smoking and CRC cases with <it>APC </it>mutation was in relationship to the smoking parameter "starting smoking ≥ 40 years ago", a time period long enough to proceed CRC initiation.</p
    corecore