45 research outputs found
Recommended from our members
Adaptive thermal sensor array placement for human segmentation and occupancy estimation
Thermal sensor array (TSA) offers privacy-preserving, low-cost, and non-invasive features, which makes it suitable for various indoor applications such as anomaly detection, health monitoring, home security, and monitoring energy efficiency applications. Previous approaches to human-centred applications using the TSA usually relied on the use of a fixed sensor location to make the human-sensor distance and the human presence shape fixed. However, placing this sensor in different locations and new indoor environments can pose a significant challenge. In this paper, a novel framework based on a deep convolutional encoder-decoder network is proposed to address this challenge in real-life deployment. The framework presents a semantic segmentation of the human presence and estimates the occupancy in indoor-environment. It is also capable to segment the human presence and counts the number of people from different sensor locations, indoor environments, and human to sensor distance. Furthermore, the impact of the distance on the human presence using the TSA is investigated. The framework is evaluated to estimate the occupancy in different sensor locations, the number of occupants, environments, and human distance with classification and regression machine learning approaches. This paper shows that the classification approach using the adaptive boosting algorithm is an accurate approach which has achieves an accuracy of 98.43% and 100% from vertical and overhead sensor locations respectively
Recommended from our members
Gait anomaly detection with low cost and low resolution infrared sensor arrays
Detecting anomalies in human gait could be used as indicators of human fall risk or other underlying health or psychological issues. This would require collecting reliable gait data. However, collecting human abnormal gait data is very challenging compared to data gathered from normal daily activities mainly because the former are relatively scarce and may exhibit an unmanageable variability with unpredictable combinations of distorted gait patterns. Recently, it was proposed that privacy concerns due to potential misuses of recorded gait images can be alleviated by using the thermal images captured by the low-resolution and low-cost thermal sensor arrays (TSAs). Therefore, to resolve the privacy concerns and data scarcity simultaneously, this paper proposes a Gait Anomaly Detection (GAD), to be created as a one-class classification (OCC) model and implemented as a reconstruction-based autoencoder (AE), while using TSAs to capture the input data. The data scarcity is conveniently addressed since this GAD design, needs only the plentiful ‘normal’ gait of one person of interest (POI) to build its base model. AE’s were deployed since they learn the intricacies of normal gait patterns, with anomaly threshold placed on the reconstruction errors of the training data. The high performance in detecting specific classes of POI’s gait anomalies, achieving impressive mean values across five critical classification metrics—F1-score (95.26%), accuracy (96.20%), precision (92.76%), recall (97.92%), and specificity (95.00%)—demonstrates the model’s feasibility and practicality. The proposed framework can facilitate independent living among the older adults as an individualised data-efficient, privacy-safe, and low-cost approach to GAD
Recommended from our members
Calibration of low-resolution thermal imaging for human monitoring applications
Thermal imaging has recently come to light to measure high human body temperature (fever) in responses to the global public health issues. This is normally achieved by very expensive high-resolution thermal cameras. Lately, there has been a new commercial low-resolution Thermal Sensor Array (TSA) that have gained growing interest in indoor human monitoring applications due to their low-cost and human privacy-preserving claims. However, there has not been sufficient independent empirical calibration of low-resolution TSA and high-resolution images for human-centred applications. This letter provides empirical calibration of low- and high-resolution thermal imaging techniques in terms of their visible outputs, accuracy in temperature values and stability. Besides, this letter assesses the claimed privacy-preserving feature of TSA by experimentally validating the possibility of revoking the human identity from the TSA's output. Thus, this letter aims to understand better the advantages, limitations, and future trends of using TSA in human monitoring applications
Recommended from our members
Multiple thermal sensor array fusion towards enabling privacy-preserving human monitoring applications
Human-centric applications of a single Thermal Sensor Array (TSA) have performed extremely well in many areas. However, most of these works have not yet reached the real applicability stage of the Internet of Things (IoT) applications. The main limitation of deploying such systems on a large scale is the challenge of fusing multiple TSAs to cover a wide inspection area, e.g. smart homes, hospitals and many other domestic environments. On the other hand, objects that appear in the low-resolution thermal images acquired from TSA have low intra-class variations and high inter-class similarities, making the identification of the overlapping regions through matching a comparable template image in multiple images very difficult. This paper proposes a motion-based approach to fuse multiple TSAs and learn the domestic environment layout to enable further human-centred IoT applications to run in the cloud. Besides, a privacy-improvement on utilising these sensors in IoT applications is proposed. The proposed approach is evaluated with comprehensive experiments on different sensor placements and domestic environment conditions. This paper shows an average performance of 92.5% accuracy using various machine learning techniques and use case scenarios
Recommended from our members
Privacy-preserving, thermal vision with human in the loop fall detection alert system
To support the independent living of older adults in their own homes, it is essential to identify their abnormal behaviors before triggering an automated alert system. Existing normal vision sensing approaches to detect human falls in the activities of daily living (ADL) experienced acceptability issues due to outstanding privacy concerns when they are deployed in personal environments. Besides, false alerts (false-positive) fall detection has not been addressed thoroughly in systems that report abnormal human behaviors as emergency alerts to the information support. This article proposes a novel human-in-the-loop fall detection approach in the ADLs using a low-resolution thermal sensor array. The motivation for enabling a human interactive model, fall detection confirmation, is to influence resource efficiency by reducing false-positive alerts while keeping the false-negative fall predictions as low as possible. The proposed approach is based on the motion sequence classification of human movements using a recurrent neural network. The proposed approach is evaluated with comprehensive experiments using different learning techniques, users, and domestic environment conditions. This article shows a performance accuracy of 99.7% to detect human falls from various typical ADLs
Perceived Challenges Faced by Nurses in Home Health Care Setting: A Qualitative Study
Background: Home care has gradually become a nursing model for nursing care. The nurses’ experiences of challenges they have in home care have remained unknown. The aim of this study was to explore the hidden aspects of challenges related to home care in Iran.
Methods: This study was conducted to explore the challenges of home nursing care using a qualitative content analysis method. Purposeful and snowball sampling methods were used for sampling. The study was conducted from September 2016 to September 2017 in the provinces of Khorasan and Tehran in Iran. Semi-structured interviews were conducted on 33 nurses who were providing home care. After data saturation, the data were analyzed.
Results: The data analysis led to the development of five main categories of “difficult instances “, “economic problems”, “professional barriers”, “social difficulties”, and “bureaucratic tension”.
Conclusion: The results of this study showed how nurses faced with a variety of challenges in home care and how they were different from hospitals. Facilitating the nursing processes, supporting home care, and recruiting nurses that had the potential to cope with the existing stressful factors and economic incentives can increase the quality of home care
Left Main Coronary Artery Revascularization in Patients with Impaired Renal Function: Percutaneous Coronary Intervention versus Coronary Artery Bypass Grafting
Introduction: The evidence about the optimal revascularization strategy in patients with left main coronary artery (LMCA) disease and impaired renal function is limited. Thus, we aimed to compare the outcomes of LMCA disease revascularization (percutaneous coronary intervention [PCI] vs. coronary artery bypass grafting [CABG]) in patients with and without impaired renal function. Methods: This retrospective cohort study included 2,138 patients recruited from 14 centers between 2015 and 2,019. We compared patients with impaired renal function who had PCI (n= 316) to those who had CABG (n = 121) and compared patients with normal renal function who had PCI (n = 906) to those who had CABG (n = 795). The study outcomes were in-hospital and follow-up major adverse cardiovascular and cerebrovascular events (MACCE). Results: Multivariable logistic regression analysis showed that the risk of in-hospital MACCE was significantly higher in CABG compared to PCI in patients with impaired renal function (odds ratio [OR]: 8.13 [95% CI: 4.19–15.76], p < 0.001) and normal renal function (OR: 2.59 [95% CI: 1.79–3.73]; p < 0.001). There were no differences in follow-up MACCE between CABG and PCI in patients with impaired renal function (HR: 1.14 [95% CI: 0.71–1.81], p = 0.585) and normal renal function (HR: 1.12 [0.90–1.39], p = 0.312). Conclusions: PCI could have an advantage over CABG in revascularization of LMCA disease in patients with impaired renal function regarding in-hospital MACCE. The follow-up MACCE was comparable between PCI and CABG in patients with impaired and normal renal function
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation