159 research outputs found
Controlling chaos in spatially extended beam-plasma system by the continuous delayed feedback
In present paper we discuss the control of complex spatio-temporal dynamics
in a {spatially extended} non-linear system (fluid model of Pierce diode) based
on the concepts of controlling chaos in the systems with few degrees of
freedom. A presented method is connected with stabilization of unstable
homogeneous equilibrium state and the unstable spatio-temporal periodical
states analogous to unstable periodic orbits of chaotic dynamics of the systems
with few degrees of freedom. We show that this method is effective and allows
to achieve desired regular dynamics chosen from a number of possible in the
considered system.Comment: 12 pages, 12 figure
A fractal set from the binary reflected Gray code
The permutation associated with the decimal expression of the binary reflected Gray code with N bits is considered. Its cycle structure is studied. Considered as a set of points, its self-similarity is pointed out. As a fractal, it is shown to be the attractor of an IFS. For large values of N the set is examined from the point of view of time series analysis
Kondo effect in quantum dots
We review mechanisms of low-temperature electronic transport through a
quantum dot weakly coupled to two conducting leads. Transport in this case is
dominated by electron-electron interaction. At temperatures moderately lower
than the charging energy of the dot, the linear conductance is suppressed by
the Coulomb blockade. Upon further lowering of the temperature, however, the
conductance may start to increase again due to the Kondo effect. We concentrate
on lateral quantum dot systems and discuss the conductance in a broad
temperature range, which includes the Kondo regime
Comparison between clinical grading and navigation data of knee laxity in ACL-deficient knees
<p>Abstract</p> <p>Background</p> <p>The latest version of the navigation system for anterior cruciate ligament (ACL) reconstruction has the supplementary ability to assess knee stability before and after ACL reconstruction. In this study, we compared navigation data between clinical grades in ACL-deficient knees and also analyzed correlation between clinical grading and navigation data.</p> <p>Methods</p> <p>150 ACL deficient knees that received primary ACL reconstruction using an image-free navigation system were included. For clinical evaluation, the Lachman, anterior drawer, and pivot shift tests were performed under general anesthesia and were graded by an examiner. For the assessment of knee stability using the navigation system, manual tests were performed again before ACL reconstruction. Navigation data were recorded as anteroposterior (AP) displacement of the tibia for the Lachman and anterior drawer tests, and both AP displacement and tibial rotation for the pivot shift test.</p> <p>Results</p> <p>Navigation data of each clinical grade were as follows; Lachman test grade 1+: 10.0 mm, grade 2+: 13.2 ± 3.1 mm, grade 3+: 14.5 ± 3.3 mm, anterior drawer test grade 1+: 6.8 ± 1.4 mm, grade 2+: 7.4 ± 1.8 mm, grade 3+: 9.1 ± 2.3 mm, pivot shift test grade 1+: 3.9 ± 1.8 mm/21.5° ± 7.8°, grade 2+: 4.8 ± 2.1 mm/21.8° ± 7.1°, and grade 3+: 6.0 ± 3.2 mm/21.1° ± 7.1°. There were positive correlations between clinical grading and AP displacement in the Lachman, and anterior drawer tests. Although positive correlations between clinical grading and AP displacement in pivot shift test were found, there were no correlations between clinical grading and tibial rotation in pivot shift test.</p> <p>Conclusions</p> <p>In response to AP force, the navigation system can provide the surgeon with correct objective data for knee laxity in ACL deficient knees. During the pivot shift test, physicians may grade according to the displacement of the tibia, rather than rotation.</p
Improving the sensitivity of the hop index in patients with an ACL deficient knee by transforming the hop distance scores
BACKGROUND: The one leg hop for distance is one of the most commonly employed functional tests utilized in the evaluation of the ACL deficient and reconstructed patient. While the reliability of the hop test scores has been well established, validity studies have revealed low sensitivity rates in detecting functional limitations using the hop index (the ratio or percentage of limb performance). However, the impact of the inherent limitations associated with the hop index have not been investigated to date. One specific limitation relates to the impact of the differences in the underlying hop distance scores. Therefore, this pilot study set out to determine: 1) the impact that between limb differences in hop distance has on the sensitivity of the hop index in detecting functional limitations and; 2) whether a logarithmic transformation of the underlying hop distance scores improves the sensitivity of the hop index. METHODS: A cross sectional design involving the evaluation of one leg hop for distance performance in a consecutive sample of 10 ACL deficient males with an isolated ACL tear awaiting reconstructive surgery and nine gender, age-matched controls. RESULTS: In the ACL deficient, the hop index was associated with the distance hopped on the non-injured limb (r = -0.66, p = 0.04) but not on the injured limb. Transformation (logarithmic) of the hop distance scores and re-calculation of the hop index using the transformed scores increased the sensitivity of the hop index in the detection of functional limitations from 20 to 60% and 50 to 70% using the normal limb symmetry reference norms of ≥ 85% and 90% respectively. CONCLUSION: The distance hopped on the non-injured limb is a critical factor in detecting functional limitations using the hop index in patients with an ACL deficient knee. Logarithmic transformation of the hop distance scores minimizes the effect of the arithmetic differences between limbs however; the sensitivity of the hop index in detecting abnormal limb symmetry remains low
Physicochemical Characterization of Passive Films and Corrosion Layers by Differential Admittance and Photocurrent Spectroscopy
Two different electrochemical techniques, differential admittance and photocurrent spectroscopy, for the characterization of electronic and solid state properties of passive films and corrosion layers are described and critically evaluated. In order to get information on the electronic properties of passive film and corrosion layers as well as the necessary information to locate the characteristic energy levels of the passive film/electrolyte junction like: flat band potential (Ufb), conduction band edge (EC) or valence band edge (EV), a wide use of Mott-Schottky plots is usually reported in corrosion science and passivity studies. It has been shown, in several papers, that the use of simple M-S theory to get information on the electronic properties and energy levels location at the film/electrolyte interface can be seriously misleading and/or conflicting with the physical basis underlying the M-S theory. A critical appraisal of this approach to the study of very thin and thick anodic passive film grown on base-metals (Cr, Ni, Fe, SS etc..) or on valve metals (Ta, Nb, W etc..) is reported in this work, together with possible alternative approach to overcome some of the mentioned inconsistencies. At this aim the theory of amorphous semiconductor Schottky barrier, introduced several years ago in the study of passive film/electrolyte junction, is reviewed by taking into account some of the more recent results obtained by the present authors. Future developments of the theory appears necessary to get more exact quantitative information on the electronic properties of passive films, specially in the case of very thin film like those formed on base metals and their alloys.
The second technique described in this chapter, devoted to the physico-chemical characterization of passive film and corrosion layers, is a more recent technique based on the analysis of the photo-electrochemical answer of passive film/electrolyte junction under illumination with photons having suitable energy. Such a technique usually referred to as Photocurrent Spectroscopy (PCS) has been developed on the basis of the large research effort carried out by several groups in the 1970’s and aimed to investigate the possible conversion of solar energy by means of electrochemical cells. In this work the fundamentals of semiconductor/electrolyte junctions under illumination will be highlighted both for crystalline and amorphous materials. The role of amorphous nature and film thickness on the photo-electrochemical answer of passive film/solution interface is reviewed as well the use of PCS for quantitative analysis of the film composition based on a semi-empirical correlation between optical band gap and difference of electronegativity of film constituents previously suggested by the present authors. In this frame the results of PCS studies on valve metal oxides and valve metal mixed oxides will be discussed in order to show the validity of the proposed method. The results of PCS studies aimed to get information on passive film composition and carried out by different authors on base metals (Fe, Cr, Ni) and their alloys, including stainless steel, will be also compared with compositional analysis carried out by well-established surface analysis techniques
A theory and methodology to quantify knowledge
This article proposes quantitative answers to meta-scientific questions including 'how much knowledge is attained by a research field?', 'how rapidly is a field making progress?', 'what is the expected reproducibility of a result?', 'how much knowledge is lost from scientific bias and misconduct?', 'what do we mean by soft science?', and 'what demarcates a pseudoscience?'. Knowledge is suggested to be a system-specific property measured by K, a quantity determined by how much of the information contained in an explanandum is compressed by an explanans, which is composed of an information 'input' and a 'theory/methodology' conditioning factor. This approach is justified on three grounds: (i) K is derived from postulating that information is finite and knowledge is information compression; (ii) K is compatible and convertible to ordinary measures of effect size and algorithmic complexity; (iii) K is physically interpretable as a measure of entropic efficiency. Moreover, the K function has useful properties that support its potential as a measure of knowledge. Examples given to illustrate the possible uses of K include: the knowledge value of proving Fermat's last theorem; the accuracy of measurements of the mass of the electron; the half life of predictions of solar eclipses; the usefulness of evolutionary models of reproductive skew; the significance of gender differences in personality; the sources of irreproducibility in psychology; the impact of scientific misconduct and questionable research practices; the knowledge value of astrology. Furthermore, measures derived from K may complement ordinary meta-analysis and may give rise to a universal classification of sciences and pseudosciences. Simple and memorable mathematical formulae that summarize the theory's key results may find practical uses in meta-research, philosophy and research policy
Introduction to the mathematical theory of knowledge conceptualization: Conceptual systems and structures
The paper departs from the general problem of knowledge integration
and the basic strategies that can be adopted to confront this challenge. With the
purpose of providing a sound meta-theoretical framework to facilitate knowledge
conceptualization and integration, as well as assessment criteria to evaluate
achievements regarding knowledge integration, the paper first reviews the previous
work in the field of conceptual spaces. It subsequently gives an overview of
structural tools and mechanisms for knowledge representation, recapped in the
modal stratified bond model of global knowledge. On these groundings, a novel
formalized representation of conceptual systems, structures, spaces and algebras
is developed through a set of definitions which goes beyond the exploration of
mental knowledge representation and the semantics of natural languages. These
two components provide a sound framework for the development of the glossaLAB
international project with respect to its two basic objectives, namely (i)
facilitating knowledge integration in general and particularly in the context of the
general study of information and systems; (ii) facilitating the assessment of the
achievements as regards knowledge integration in interdisciplinary settings. An
additional article tackles the solutions adopted to integrate these results in the
elucidation of the conceptual network of the general study of information and
systems.2019-2
- …