866 research outputs found
Gene co-expression in the interactome: moving from correlation toward causation via an integrated approach to disease module discovery
In this study, we integrate the outcomes of co-expression network analysis with the human interactome network to predict novel putative disease genes and modules. We first apply the SWItch Miner (SWIM) methodology, which predicts important (switch) genes within the co-expression network that regulate disease state transitions, then map them to the human proteinâprotein interaction network (PPI, or interactome) to predict novel diseaseâdisease relationships (i.e., a SWIM-informed diseasome). Although the relevance of switch genes to an observed phenotype has been recently assessed, their performance at the system or network level constitutes a new, potentially fascinating territory yet to be explored. Quantifying the interplay between switch genes and human diseases in the interactome network, we found that switch genes associated with specific disorders are closer to each other than to other nodes in the network, and tend to form localized connected subnetworks. These subnetworks overlap between similar diseases and are situated in different neighborhoods for pathologically distinct phenotypes, consistent with the well-known topological proximity property of disease genes. These findings allow us to demonstrate how SWIM-based correlation network analysis can serve as a useful tool for efficient screening of potentially new disease gene associations. When integrated with an interactome-based network analysis, it not only identifies novel candidate disease genes, but also may offer testable hypotheses by which to elucidate the molecular underpinnings of human disease and reveal commonalities between seemingly unrelated diseases
Recommended from our members
Bone Morphogenetic Proteinâ2 Decreases MicroRNAâ30b and MicroRNAâ30c to Promote Vascular Smooth Muscle Cell Calcification
Background: Vascular calcification resembles bone formation and involves vascular smooth muscle cell (SMC) transition to an osteoblastâlike phenotype to express Runx2, a master osteoblast transcription factor. One possible mechanism by which Runx2 protein expression is induced is downregulation of inhibitory microRNAs (miR). Methods and Results: Human coronary artery SMCs (CASMCs) treated with bone morphogenetic proteinâ2 (BMPâ2; 100 ng/mL) demonstrated a 1.7âfold (P<0.02) increase in Runx2 protein expression at 24 hours. A miR microarray and target prediction database analysis independently identified miRâ30b and miRâ30c (miRâ30bâc) as miRs that regulate Runx2 expression. Realâtimeâpolymerase chain reaction confirmed that BMPâ2 decreased miRâ30b and miRâ30c expression. A luciferase reporter assay verified that both miRâ30b and miRâ30c bind to the 3âČâuntranslated region of Runx2 mRNA to regulate its expression. CASMCs transfected with antagomirs to downregulate miRâ30bâc demonstrated significantly increased Runx2, intracellular calcium deposition, and mineralization. Conversely, forced expression of miRâ30bâc by transfection with preâmiRâ30bâc prevented the increase in Runx2 expression and mineralization of SMCs. Calcified human coronary arteries demonstrated higher levels of BMPâ2 and lower levels of miRâ30b than did noncalcified donor coronary arteries. Conclusions: BMPâ2 downregulates miRâ30b and miRâ30c to increase Runx2 expression in CASMCs and promote mineralization. Strategies that modulate expression of miRâ30b and miRâ30c may influence vascular calcification
Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD
Background: The investigation of complex disease heterogeneity has been challenging. Here, we introduce a network-based approach, using partial correlations, that analyzes the relationships among multiple disease-related phenotypes. Results: We applied this method to two large, well-characterized studies of chronic obstructive pulmonary disease (COPD). We also examined the associations between these COPD phenotypic networks and other factors, including case-control status, disease severity, and genetic variants. Using these phenotypic networks, we have detected novel relationships between phenotypes that would not have been observed using traditional epidemiological approaches. Conclusion: Phenotypic network analysis of complex diseases could provide novel insights into disease susceptibility, disease severity, and genetic mechanisms
Recommended from our members
DiseaseConnect: a comprehensive web server for mechanism-based diseaseâdisease connections
The DiseaseConnect (http://disease-connect.org) is a web server for analysis and visualization of a comprehensive knowledge on mechanism-based disease connectivity. The traditional disease classification system groups diseases with similar clinical symptoms and phenotypic traits. Thus, diseases with entirely different pathologies could be grouped together, leading to a similar treatment design. Such problems could be avoided if diseases were classified based on their molecular mechanisms. Connecting diseases with similar pathological mechanisms could inspire novel strategies on the effective repositioning of existing drugs and therapies. Although there have been several studies attempting to generate disease connectivity networks, they have not yet utilized the enormous and rapidly growing public repositories of disease-related omics data and literature, two primary resources capable of providing insights into disease connections at an unprecedented level of detail. Our DiseaseConnect, the first public web server, integrates comprehensive omics and literature data, including a large amount of gene expression data, Genome-Wide Association Studies catalog, and text-mined knowledge, to discover diseaseâdisease connectivity via common molecular mechanisms. Moreover, the clinical comorbidity data and a comprehensive compilation of known drugâdisease relationships are additionally utilized for advancing the understanding of the disease landscape and for facilitating the mechanism-based development of new drug treatments
Clinical epigenetics settings for cancer and cardiovascular diseases: real-life applications of network medicine at the bedside
Despite impressive efforts invested in epigenetic research in the last 50 years, clinical applications are still lacking. Only a few university hospital centers currently use epigenetic biomarkers at the bedside. Moreover, the overall concept of precision medicine is not widely recognized in routine medical practice and the reductionist approach remains predominant in treating patients affected by major diseases such as cancer and cardiovascular diseases. By itsâ very nature, epigenetics is integrative of genetic networks. The study of epigenetic biomarkers has led to the identification of numerous drugs with an increasingly significant role in clinical therapy especially of cancer patients. Here, we provide an overview of clinical epigenetics within the context of network analysis. We illustrate achievements to date and discuss how we can move from traditional medicine into the era of network medicine (NM), where pathway-informed molecular diagnostics will allow treatment selection following the paradigm of precision medicine
Selenoprotein gene nomenclature
The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4 and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine-R-sulfoxide reductase 1) and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15 kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV) and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates
The Role of Quantitative Pharmacology in an Academic Translational Research Environment
Translational research is generally described as the application of basic science discoveries to the treatment or prevention of disease or injury. Its value is usually determined based on the likelihood that exploratory or developmental research can yield effective therapies. While the pharmaceutical industry has evolved into a highly specialized sector engaged in translational research, the academic medical research community has similarly embraced this paradigm largely through the motivation of the National Institute of Health (NIH) via its Roadmap initiative. The Clinical and Translational Science Award (CTSA) has created opportunities for institutions which can provide the multidisciplinary environment required to engage such research. A key component of the CTSA and an element of both the NIH Roadmap and the FDA Critical Path is the bridging of bench and bedside science via quantitative pharmacologic relationships. The infrastructure of the University of Pennsylvania/Childrenâs Hospital of Philadelphia CTSA is highlighted relative to both research and educational objectives reliant upon quantitative pharmacology. A case study, NIH-sponsored research program exploring NK1r antagonism for the treatment NeuroAIDS is used to illustrate the application of quantitative pharmacology in a translational research paradigm
Recommended from our members
An integrated clinical program and crowdsourcing strategy for genomic sequencing and Mendelian disease gene discovery.
Despite major progress in defining the genetic basis of Mendelian disorders, the molecular etiology of many cases remains unknown. Patients with these undiagnosed disorders often have complex presentations and require treatment by multiple health care specialists. Here, we describe an integrated clinical diagnostic and research program using whole-exome and whole-genome sequencing (WES/WGS) for Mendelian disease gene discovery. This program employs specific case ascertainment parameters, a WES/WGS computational analysis pipeline that is optimized for Mendelian disease gene discovery with variant callers tuned to specific inheritance modes, an interdisciplinary crowdsourcing strategy for genomic sequence analysis, matchmaking for additional cases, and integration of the findings regarding gene causality with the clinical management plan. The interdisciplinary gene discovery team includes clinical, computational, and experimental biomedical specialists who interact to identify the genetic etiology of the disease, and when so warranted, to devise improved or novel treatments for affected patients. This program effectively integrates the clinical and research missions of an academic medical center and affords both diagnostic and therapeutic options for patients suffering from genetic disease. It may therefore be germane to other academic medical institutions engaged in implementing genomic medicine programs
- âŠ