3,461 research outputs found

    Identification of Xenopus SMC protein complexes required for sister chromatid cohesion

    Get PDF
    The structural maintenance of chromosomes (SMC) family is a growing family of chromosomal ATPases. The founding class of SMC protein complexes, condensins, plays a central role in mitotic chromosome condensation. We report here a new class of SMC protein complexes containing XSMC1 and XSMC3, Xenopus homologs of yeast Smc1p and Smc3p, respectively. The protein complexes (termed cohesins) exist as two major forms with sedimentation coefficients of 9S and 14S. 9S cohesin is a heterodimer of XSMC1 and XSMC3, whereas 14S cohesin contains three additional subunits. One of them has been identified as a Xenopus homolog of the Schizosaccharomyces pombe Rad21p implicated in DNA repair and the Saccharomyces cerevisiae Scc1p/Mcd1p implicated in sister chromatid cohesion. 14S cohesin binds to interphase chromatin independently of DNA replication and dissociates from it at the onset of mitosis. Immunodepletion of cohesins during interphase causes defects in sister chromatid cohesion in subsequent mitosis, whereas condensation is unaffected. These results suggest that proper assembly of mitotic chromosomes is regulated by two distinct classes of SMC protein complexes, cohesins and condensins

    Effects of Large CP-violating Soft Phases on Supersymmetric Electroweak Baryogenesis

    Get PDF
    We revisit the results of recent electroweak baryogenesis calculations and include all allowed large CP-violating supersymmetric phases. If the phases are large, the resulting baryon asymmetry can be considerably larger than the observed value nB/s4×1011n_B/s \sim 4 \times 10^{-11}. Much of the asymmetry must therefore be washed out, and we argue that the upper bound on the light Higgs mass is larger than the value reported in previous work.Comment: 15 pages, 3 figure

    Flavour Matters in Leptogenesis

    Get PDF
    We give analytic approximations to the baryon asymmetry produced by thermal leptogenesis with hierarchical right-handed neutrinos. Our calculation includes flavour-dependent washout processes and CP violation in scattering, and neglects gauge interactions and finite temperature corrections. Our approximate formulae depend upon the three CP asymmetries in the individual lepton flavours as well as on three flavour-dependent efficiency factors. We show that the commonly used expressions for the lepton asymmetry, which depend on the total CP asymmetry and one single efficiency factor, may fail to reproduce the correct lepton asymmetry in a number of cases. We illustrate the importance of using the flavour-dependent formulae in the context of a two right-handed neutrino model.Comment: Additional typos corrected (in particular, the plots and captions now agree

    Leptogenesis beyond the limit of hierarchical heavy neutrino masses

    Full text link
    We calculate the baryon asymmetry of the Universe in thermal leptogenesis beyond the usual lightest right-handed (RH) neutrino dominated scenario (N_1DS) and in particular beyond the hierarchical limit (HL), M_1 << M_2 << M_3, for the RH neutrino mass spectrum. After providing some orientation among the large variety of models, we first revisit the central role of the N_1DS, with new insights on the dynamics of the asymmetry generation and then discuss the main routes departing from it, focusing on models beyond the HL. We study in detail two examples of `strong-strong' wash-out scenarios: one with `maximal phase' and the limit of very large M_3, studying the effects arising when delta_2=(M_2-M_1)/M_1 is small. We extend analytical methods already applied to the N_1DS showing, for example, that, in the degenerate limit (DL), the efficiency factors of the RH neutrinos become equal with the single decay parameter replaced by the sum. Both cases disprove the misconception that close RH neutrino masses necessarily lead to a final asymmetry enhancement and to a relaxation of the lower bounds on M_1 and on the initial temperature of the radiation-dominated expansion. We also explain why leptogenesis tends to favor normal hierarchy compared to inverted hierarchy for the left-handed neutrino masses.Comment: 30 pages, 8 figures; corrected typo in Eq. (67); shortened Introduction, Section 3 and Conclusions; one figure removed; added 2 references; to appear in JCA

    Dark Matter, Light Stops and Electroweak Baryogenesis

    Full text link
    We examine the neutralino relic density in the presence of a light top squark, such as the one required for the realization of the electroweak baryogenesis mechanism, within the minimal supersymmetric standard model. We show that there are three clearly distinguishable regions of parameter space, where the relic density is consistent with WMAP and other cosmological data. These regions are characterized by annihilation cross sections mediated by either light Higgs bosons, Z bosons, or by the co-annihilation with the lightest stop. Tevatron collider experiments can test the presence of the light stop in most of the parameter space. In the co-annihilation region, however, the mass difference between the light stop and the lightest neutralino varies between 15 and 30 GeV, presenting an interesting challenge for stop searches at hadron colliders. We present the prospects for direct detection of dark matter, which provides a complementary way of testing this scenario. We also derive the required structure of the high energy soft supersymmetry breaking mass parameters where the neutralino is a dark matter candidate and the stop spectrum is consistent with electroweak baryogenesis and the present bounds on the lightest Higgs mass.Comment: 24 pages, 8 figures; version published in Phys.Rev.

    Flavour Issues in Leptogenesis

    Full text link
    We study the impact of flavour in thermal leptogenesis, including the quantum oscillations of the asymmetries in lepton flavour space. In the Boltzmann equations we find different numerical factors and additional terms which can affect the results significantly. The upper bound on the CP asymmetry in a specific flavour is weaker than the bound on the sum. This suggests that -- when flavour dynamics is included -- there is no model-independent limit on the light neutrino mass scale,and that the lower bound on the reheat temperature is relaxed by a factor ~ (3 - 10).Comment: 19 pages, corrected equations for flavour oscillation

    Improved Results in Supersymmetric Electroweak Baryogenesis

    Full text link
    Electroweak baryogenesis provides a very attractive scenario to explain the origin of the baryon asymmetry. The mechanism of electroweak baryogenesis makes use of the baryon number anomaly and relies on physics that can be tested experimentally. It is today understood that, if the Higgs mass is not larger than 120 GeV, this mechanism may be effective within supersymmetric extensions of the Standard Model. In this work, we reconsider the question of baryon number generation at the electroweak phase transition within the context of the minimal supersymmetric extension of the Standard Model. We derive the relevant diffusion equations, give a consistent definition of the sources, and compare our results with those appearing in the recent literature on this subjectComment: 19 pages, 2 figure

    Top-squark searches at the Tevatron in models of low-energy supersymmetry breaking

    Get PDF
    We study the production and decays of top squarks (stops) at the Tevatron collider in models of low-energy supersymmetry breaking. We consider the case where the lightest Standard Model (SM) superpartner is a light neutralino that predominantly decays into a photon and a light gravitino. Considering the lighter stop to be the next-to-lightest Standard Model superpartner, we analyze stop signatures associated with jets, photons and missing energy, which lead to signals naturally larger than the associated SM backgrounds. We consider both 2-body and 3-body decays of the top squarks and show that the reach of the Tevatron can be significantly larger than that expected within either the standard supergravity models or models of low-energy supersymmetry breaking in which the stop is the lightest SM superpartner. For a modest projection of the final Tevatron luminosity, L = 4 fb-1, stop masses of order 300 GeV are accessible at the Tevatron collider in both 2-body and 3-body decay modes. We also consider the production and decay of ten degenerate squarks that are the supersymmetric partners of the five light quarks. In this case we find that common squark masses up to 360 GeV are easily accessible at the Tevatron collider, and that the reach increases further if the gluino is light.Comment: 32 pages, 9 figures; references adde
    corecore