140 research outputs found

    Emergence of Drug Tolerance in Cancer Cell Populations: An Evolutionary Outcome of Selection, Nongenetic Instability, and Stress-Induced Adaptation

    Get PDF
    In recent experiments on isogenetic cancer cell lines, it was observed that exposure to high doses of anticancer drugs can induce the emergence of a subpopulation of weakly proliferative and drug-tolerant cells, which display markers associated with stem cell-like cancer cells. After a period of time, some of the surviving cells were observed to change their phenotype to resume normal proliferation and eventually repopulate the sample. Furthermore, the drug-tolerant cells could be drug resensitized following drug washout. Here, we propose a theoretical mechanism for the transient emergence of such drug tolerance. In this framework, we formulate an individual-based model and an integro-differential equation model of reversible phenotypic evolution in a cell population exposed to cytotoxic drugs. The outcomes of both models suggest that nongenetic instability, stress-induced adaptation, selection, and the interplay between these mechanisms can push an actively proliferating cell population to transition into a weakly proliferative and drug-tolerant state. Hence, the cell population experiences much less stress in the presence of the drugs and, in the long run, reacquires a proliferative phenotype, due to phenotypic fluctuations and selection pressure. These mechanisms can also reverse epigenetic drug tolerance following drug washout. Our study highlights how the transient appearance of the weakly proliferative and drug-tolerant cells is related to the use of high-dose therapy. Furthermore, we show how stem-like characteristics can act to stabilize the transient, weakly proliferative, and drug-tolerant subpopulation for a longer time window. Finally, using our models as in silico laboratories, we propose new testable hypotheses that could help uncover general principles underlying the emergence of cancer drug tolerance

    Emergence of Anti-Cancer Drug Resistance: Exploring the Importance of the Microenvironmental Niche via a Spatial Model

    Full text link
    Practically, all chemotherapeutic agents lead to drug resistance. Clinically, it is a challenge to determine whether resistance arises prior to, or as a result of, cancer therapy. Further, a number of different intracellular and microenvironmental factors have been correlated with the emergence of drug resistance. With the goal of better understanding drug resistance and its connection with the tumor microenvironment, we have developed a hybrid discrete-continuous mathematical model. In this model, cancer cells described through a particle-spring approach respond to dynamically changing oxygen and DNA damaging drug concentrations described through partial differential equations. We thoroughly explored the behavior of our self-calibrated model under the following common conditions: a fixed layout of the vasculature, an identical initial configuration of cancer cells, the same mechanism of drug action, and one mechanism of cellular response to the drug. We considered one set of simulations in which drug resistance existed prior to the start of treatment, and another set in which drug resistance is acquired in response to treatment. This allows us to compare how both kinds of resistance influence the spatial and temporal dynamics of the developing tumor, and its clonal diversity. We show that both pre-existing and acquired resistance can give rise to three biologically distinct parameter regimes: successful tumor eradication, reduced effectiveness of drug during the course of treatment (resistance), and complete treatment failure

    Interactions between proteins bound to biomembranes

    Full text link
    We study a physical model for the interaction between general inclusions bound to fluid membranes that possess finite tension, as well as the usual bending rigidity. We are motivated by an interest in proteins bound to cell membranes that apply forces to these membranes, due to either entropic or direct chemical interactions. We find an exact analytic solution for the repulsive interaction between two similar circularly symmetric inclusions. This repulsion extends over length scales of order tens of nanometers, and contrasts with the membrane-mediated contact attraction for similar inclusions on tensionless membranes. For non circularly symmetric inclusions we study the small, algebraically long-ranged, attractive contribution to the force that arises. We discuss the relevance of our results to biological phenomena, such as the budding of caveolae from cell membranes and the striations that are observed on their coats.Comment: 22 pages, 2 figure

    Activation of the Fas/Fas ligand pathway in hypertensive renal disease in Dahl/Rapp rats

    Get PDF
    BACKGROUND: Hypertensive nephrosclerosis is the second most common cause of end-stage renal failure in the United States. The mechanism by which hypertension produces renal failure is incompletely understood. Recent evidence demonstrated that an unscheduled and inappropriate increase in apoptosis occurred in the Dahl/Rapp rat, an inbred strain of rat that uniformly develops hypertension and hypertensive nephrosclerosis; early correction of the hypertension prevents the renal injury. The present study examined the role of the Fas/FasL pathway in this process. METHODS: Young male Dahl/Rapp salt-sensitive (S) and Sprague-Dawley rats were fed diets that contained 0.3% or 8.0% NaCl diets. Kidneys were examined at days 7 and 21 of the study. RESULTS: An increase in Fas and FasL expression was observed in glomerular and tubular compartments of kidneys of hypertensive S rats, whereas dietary salt did not change expression of either of these molecules in normotensive Sprague-Dawley rats. Associated with this increase was cleavage of Bid and activation of caspase-8, the initiator caspase in this apoptotic pathway, by day 21 of the study. CONCLUSIONS: Augmented expression of apoptotic signaling by the Fas/FasL pathway occurred during development of end-stage renal failure in this model of hypertensive nephrosclerosis

    A Functional Role of RB-Dependent Pathway in the Control of Quiescence in Adult Epidermal Stem Cells Revealed by Genomic Profiling

    Get PDF
    Continuous cell renewal in mouse epidermis is at the expense of a pool of pluripotent cells that lie in a well defined niche in the hair follicle known as the bulge. To identify mechanisms controlling hair follicle stem cell homeostasis, we developed a strategy to isolate adult bulge stem cells in mice and to define their transcriptional profile. We observed that a large number of transcripts are underexpressed in hair follicle stem cells when compared to non-stem cells. Importantly, the majority of these downregulated genes are involved in cell cycle. Using bioinformatics tools, we identified the E2F transcription factor family as a potential element involved in the regulation of these transcripts. To determine their functional role, we used engineered mice lacking Rb gene in epidermis, which showed increased expression of most E2F family members and increased E2F transcriptional activity. Experiments designed to analyze epidermal stem cell functionality (i.e.: hair regrowth and wound healing) imply a role of the Rb-E2F axis in the control of stem cell quiescence in epidermis

    Distinct Cytoplasmic and Nuclear Functions of the Stress Induced Protein DDIT3/CHOP/GADD153

    Get PDF
    DDIT3, also known as GADD153 or CHOP, encodes a basic leucine zipper transcription factor of the dimer forming C/EBP family. DDIT3 is known as a key regulator of cellular stress response, but its target genes and functions are not well characterized. Here, we applied a genome wide microarray based expression analysis to identify DDIT3 target genes and functions. By analyzing cells carrying tamoxifen inducible DDIT3 expression constructs we show distinct gene expression profiles for cells with cytoplasmic and nuclear localized DDIT3. Of 175 target genes identified only 3 were regulated by DDIT3 in both cellular localizations. More than two thirds of the genes were downregulated, supporting a role for DDIT3 as a dominant negative factor that could act by either cytoplasmic or nuclear sequestration of dimer forming transcription factor partners. Functional annotation of target genes showed cell migration, proliferation and apoptosis/survival as the most affected categories. Cytoplasmic DDIT3 affected more migration associated genes, while nuclear DDIT3 regulated more cell cycle controlling genes. Cell culture experiments confirmed that cytoplasmic DDIT3 inhibited migration, while nuclear DDIT3 caused a G1 cell cycle arrest. Promoters of target genes showed no common sequence motifs, reflecting that DDIT3 forms heterodimers with several alternative transcription factors that bind to different motifs. We conclude that expression of cytoplasmic DDIT3 regulated 94 genes. Nuclear translocation of DDIT3 regulated 81 additional genes linked to functions already affected by cytoplasmic DDIT3. Characterization of DDIT3 regulated functions helps understanding its role in stress response and involvement in cancer and degenerative disorders

    Osteoprotegerin in Exosome-Like Vesicles from Human Cultured Tubular Cells and Urine

    Get PDF
    Urinary exosomes have been proposed as potential diagnostic tools. TNF superfamily cytokines and receptors may be present in exosomes and are expressed by proximal tubular cells. We have now studied the expression of selected TNF superfamily proteins in exosome-like vesicles from cultured human proximal tubular cells and human urine and have identified additional proteins in these vesicles by LC-MS/MS proteomics. Human proximal tubular cells constitutively released exosome-like vesicles that did not contain the TNF superfamily cytokines TRAIL or TWEAK. However, exosome-like vesicles contained osteoprotegerin (OPG), a TNF receptor superfamily protein, as assessed by Western blot, ELISA or selected reaction monitoring by nLC-(QQQ)MS/MS. Twenty-one additional proteins were identified in tubular cell exosomelike vesicles, including one (vitamin D binding protein) that had not been previously reported in exosome-like vesicles. Twelve were extracellular matrix proteins, including the basement membrane proteins type IV collagen, nidogen-1, agrin and fibulin-1. Urine from chronic kidney disease patients contained a higher amount of exosomal protein and exosomal OPG than urine from healthy volunteers. Specifically OPG was increased in autosomal dominant polycystic kidney disease urinary exosome-like vesicles and expressed by cystic epithelium in vivo. In conclusion, OPG is present in exosome-like vesicles secreted by proximal tubular epithelial cells and isolated from Chronic Kidney Disease urine.This work was supported by grants from the Instituto de Salud Carlos III (ISCIIIRETIC REDINREN RD06/0016, RD12/0021, PI11/01854, PI10/00072 PI09/ 00641 and PS09/00447); Comunidad de Madrid (Fibroteam S2010/BMD-2321, S2010/BMD-2378); Sociedad Española de NefrologÍa; European Network (HEALTH F2-2008-200647); DIALOK European project LSHB-CT-2007-036644; Fundacion Lilly and IRSIN/FRIAT to JE; Programa Intensificación Actividad Investigadora (ISCIII/ Agencia Laín-Entralgo/CM) to AO; Instituto de Salud Carlos III (FIS PI11/01401, CP09/00229); and Fundación Conchita Rábago de Jiménez DÍaz to GAL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    The role of reactive oxygen species in apoptosis of the diabetic kidney

    Get PDF
    Increased levels of reactive oxygen species (ROS) by hyperglycemia can induce apoptosis of renal cells and diabetic nephropathy. The redox balance in the renal cell seems, therefore, of the utmost importance. ROS-mediated apoptosis may be further aggravated by an inadequate cytoprotective response against ROS. When there are insufficient cytoprotective and ROS scavenging molecules, ROS lead to considerable cellular damage and to a point of no return in apoptosis. Induction of cytoprotective proteins may prevent or attenuate apoptosis, renal cell injury, and finally diabetic nephropathy. Here, we discuss some mechanisms of apoptosis and several strategies that have been probed to ameliorate, or to prevent apoptosis in the diabetic kidney
    corecore