59 research outputs found

    INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

    Get PDF
    [EN] This paper describes the achievements of the H2020 project INDIGO-DataCloud. The project has provided e-infrastructures with tools, applications and cloud framework enhancements to manage the demanding requirements of scientific communities, either locally or through enhanced interfaces. The middleware developed allows to federate hybrid resources, to easily write, port and run scientific applications to the cloud. In particular, we have extended existing PaaS (Platform as a Service) solutions, allowing public and private e-infrastructures, including those provided by EGI, EUDAT, and Helix Nebula, to integrate their existing services and make them available through AAI services compliant with GEANT interfederation policies, thus guaranteeing transparency and trust in the provisioning of such services. Our middleware facilitates the execution of applications using containers on Cloud and Grid based infrastructures, as well as on HPC clusters. Our developments are freely downloadable as open source components, and are already being integrated into many scientific applications.INDIGO-Datacloud has been funded by the European Commision H2020 research and innovation program under grant agreement RIA 653549.Salomoni, D.; Campos, I.; Gaido, L.; Marco, J.; Solagna, P.; Gomes, J.; Matyska, L.... (2018). INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures. Journal of Grid Computing. 16(3):381-408. https://doi.org/10.1007/s10723-018-9453-3S381408163García, A.L., Castillo, E.F.-d., Puel, M.: Identity federation with VOMS in cloud infrastructures. In: 2013 IEEE 5Th International Conference on Cloud Computing Technology and Science, pp 42–48 (2013)Chadwick, D.W., Siu, K., Lee, C., Fouillat, Y., Germonville, D.: Adding federated identity management to OpenStack. Journal of Grid Computing 12(1), 3–27 (2014)Craig, A.L.: A design space review for general federation management using keystone. In: Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, pp 720–725. IEEE Computer Society (2014)Pustchi, N., Krishnan, R., Sandhu, R.: Authorization federation in iaas multi cloud. In: Proceedings of the 3rd International Workshop on Security in Cloud Computing, pp 63–71. ACM (2015)Lee, C.A., Desai, N., Brethorst, A.: A Keystone-Based Virtual Organization Management System. In: 2014 IEEE 6Th International Conference On Cloud Computing Technology and Science (Cloudcom), pp 727–730. IEEE (2014)Castillo, E.F.-d., Scardaci, D., García, A.L.: The EGI Federated Cloud e-Infrastructure. Procedia Computer Science 68, 196–205 (2015)AARC project: AARC Blueprint Architecture, see https://aarc-project.eu/architecture . Technical report (2016)Oesterle, F., Ostermann, S., Prodan, R., Mayr, G.J.: Experiences with distributed computing for meteorological applications: grid computing and cloud computing. Geosci. Model Dev. 8(7), 2067–2078 (2015)Plasencia, I.C., Castillo, E.F.-d., Heinemeyer, S., García, A.L., Pahlen, F., Borges, G.: Phenomenology tools on cloud infrastructures using OpenStack. The European Physical Journal C 73(4), 2375 (2013)Boettiger, C.: An introduction to docker for reproducible research. ACM SIGOPS Operating Systems Review 49(1), 71–79 (2015)Docker: http://www.docker.com (2013)Gomes, J., Campos, I., Bagnaschi, E., David, M., Alves, L., Martins, J., Pina, J., Alvaro, L.-G., Orviz, P.: Enabling rootless linux containers in multi-user environments: the udocker tool. Computing Physics Communications. https://doi.org/10.1016/j.cpc.2018.05.021 (2018)Zhang, Z., Chuan, W., Cheung, D.W.L.: A survey on cloud interoperability taxonomies, standards, and practice. SIGMETRICS perform. Eval. Rev. 40(4), 13–22 (2013)Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments. Journal of Grid Computing 12(4), 559–592 (2014)Nyrén, R., Metsch, T., Edmonds, A., Papaspyrou, A.: Open Cloud Computing Interface–Core. Technical report, Open Grid Forum (2010)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-Infrastructure. Technical report, Open Grid Forum (2010)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-RESTful HTTP Rendering. Technical report, Open Grid Forum (2011)(Ca Technologies) Lipton, P., (Ibm) Moser, S., (Vnomic) Palma, D., (Ibm) Spatzier, T.: Topology and Orchestration Specification for Cloud Applications. Technical report, OASIS Standard (2013)Teckelmann, R., Reich, C., Sulistio, A.: Mapping of cloud standards to the taxonomy of interoperability in IaaS. In: Proceedings - 2011 3rd IEEE International Conference on Cloud Computing Technology and Science, CloudCom 2011, pp 522–526 (2011)García, A.L., Castillo, E.F.-d., Fernández, P.O.: Standards for enabling heterogeneous IaaS cloud federations. Computer Standards & Interfaces 47, 19–23 (2016)Caballer, M., Zala, S., García, A.L., Montó, G., Fernández, P.O., Velten, M.: Orchestrating complex application architectures in heterogeneous clouds. Journal of Grid Computing 16 (1), 3–18 (2018)Hardt, M., Jejkal, T., Plasencia, I.C., Castillo, E.F.-d., Jackson, A., Weiland, M., Palak, B., Plociennik, M., Nielsson, D.: Transparent Access to Scientific and Commercial Clouds from the Kepler Workflow Engine. Computing and Informatics 31(1), 119 (2012)Fakhfakh, F., Kacem, H.H., Kacem, A.H.: Workflow Scheduling in Cloud Computing a Survey. In: IEEE 18Th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations (EDOCW), 2014, Vol. 71, pp. 372–378. Springer, New York (2014)Stockton, D.B., Santamaria, F.: Automating NEURON simulation deployment in cloud resources. Neuroinformatics 15(1), 51–70 (2017)Plóciennik, M., Fiore, S., Donvito, G., Owsiak, M., Fargetta, M., Barbera, R., Bruno, R., Giorgio, E., Williams, D.N., Aloisio, G.: Two-level Dynamic Workflow Orchestration in the INDIGO DataCloud for Large-scale, Climate Change Data Analytics Experiments. Procedia Computer Science 80, 722–733 (2016)Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Multicloud deployment of computing clusters for loosely coupled mtc applications. IEEE transactions on parallel and distributed systems 22(6), 924–930 (2011)Katsaros, G., Menzel, M., Lenk, A.: Cloud Service Orchestration with TOSCA, Chef and Openstack. In: Ic2e (2014)Garcia, A.L., Zangrando, L., Sgaravatto, M., Llorens, V., Vallero, S., Zaccolo, V., Bagnasco, S., Taneja, S., Dal Pra, S., Salomoni, D., Donvito, G.: Improved Cloud resource allocation: how INDIGO-DataCloud is overcoming the current limitations in Cloud schedulers. J. Phys. Conf. Ser. 898(9), 92010 (2017)Singh, S., Chana, I.: A survey on resource scheduling in cloud computing issues and challenges. Journal of Grid Computing, pp. 1–48 (2016)García, A.L., Castillo, E.F.-d., Fernández, P.O., Plasencia, I.C., de Lucas, J.M.: Resource provisioning in Science Clouds: Requirements and challenges. Software: Practice and Experience 48(3), 486–498 (2018)Chauhan, M.A., Babar, M.A., Benatallah, B.: Architecting cloud-enabled systems: a systematic survey of challenges and solutions. Software - Practice and Experience 47(4), 599–644 (2017)Somasundaram, T.S., Govindarajan, K.: CLOUDRB A Framework for scheduling and managing High-Performance Computing (HPC) applications in science cloud. Futur. Gener. Comput. Syst. 34, 47–65 (2014)Sotomayor, B., Keahey, K., Foster, I.: Overhead Matters: A Model for Virtual Resource Management. In: Proceedings of the 2nd International Workshop on Virtualization Technology in Distributed Computing SE - VTDC ’06, p 5. IEEE Computer Society, Washington (2006)SS, S.S., Shyam, G.K., Shyam, G.K.: Resource management for Infrastructure as a Service (IaaS) in cloud computing SS Manvi A survey. J. Netw. Comput. Appl. 41, 424–440 (2014)INDIGO-DataCloud consortium: Initial requirements from research communities - d2.1, see https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 . Technical report (2015)Europen open science cloud: https://ec.europa.eu/research/openscience (2015)Proot: https://proot-me.github.io/ (2014)Runc: https://github.com/opencontainers/runc (2016)Fakechroot: https://github.com/dex4er/fakechroot (2015)Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for container-based architectures Future Generation Computer Systems (2018)de Vries, K.J.: Global fits of supersymmetric models after LHC run 1. Phd thesis Imperial College London (2015)Openstack: https://www.openstack.org/ (2015)See http://argus-documentation.readthedocs.io/en/stable/argus_introduction.html (2017)See https://en.wikipedia.org/wiki/xacml (2013)See http://www.simplecloud.info (2014)Opennebula: http://opennebula.org/ (2018)Redhat openshift: http://www.opencityplatform.eu (2011)The cloud foundry foundation: https://www.cloudfoundry.org/ (2015)Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. Journal of Grid Computing 13(1), 53–70 (2015)See http://www.infoq.com/articles/scaling-docker-with-kubernetes http://www.infoq.com/articles/scaling-docker-with-kubernetes (2014)Prisma project: http://www.ponsmartcities-prisma.it/ (2010)Opencitiy platform: http://www.opencityplatform.eu (2014)Onedata: https://onedata.org/ (2018)Dynafed: http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project (2011)Fts3: https://svnweb.cern.ch/trac/fts3 (2011)Fernández, P.O., García, A.L., Duma, D.C., Donvito, G., David, M., Gomes, J.: A set of common software quality assurance baseline criteria for research projects, see http://hdl.handle.net/10261/160086 . Technical reportHttermann, M.: Devops for developers Apress (2012)EOSC-Hub: ”Integrating and managing services for the European Open Science Cloud” Funded by H2020 research and innovation pr ogramme under grant agreement No. 777536. See http://eosc-hub.eu (2018)Apache License: author = https://www.apache.org/licenses/LICENSE-2.0 (2004)INDIGO Package Repo: http://repo.indigo-datacloud.eu/ (2017)INDIGO DockerHub: https://hub.docker.com/u/indigodatacloud/ https://hub.docker.com/u/indigodatacloud/ (2015)Indigo gitbook: https://indigo-dc.gitbooks.io/indigo-datacloud-releases https://indigo-dc.gitbooks.io/indigo-datacloud-releases (2017)Van Zundert, G.C., Bonvin, A.M.: Disvis: quantifying and visualizing the accessible interaction space of distance restrained biomolecular complexes. Bioinformatics 31(19), 3222–3224 (2015)Van Zundert, G.C., Bonvin, A.M.: Fast and sensitive rigid–body fitting into cryo–em density maps with powerfit. AIMS Biophys. 2(0273), 73–87 (2015

    The value of fetal fibronectin in cervical and vaginal secretions and of ultrasonographic examination of the uterine cervix in predicting premature delivery for patients with preterm labor and intact membranes

    No full text
    OBJECTIVE: We compared the diagnostic performances of fetal fibronectin assay of cervical and vaginal secretions and of transvaginal ultrasonographic evaluation of the uterine cervix in the prediction of preterm delivery of patients presenting with preterm labor and intact membranes. STUDY DESIGN: One hundred eight patients admitted to the hospital for preterm labor and with intact membranes underwent assay of fibronectin in the cervical and Vaginal secretions and transvaginal ultrasonographic evaluation of the uterine cervix. The ultrasonographic parameters evaluated were cervical length, presence of funneling, and cervical index ([Funnel length +1]/Cervical length). Outcome measures were occurrence of preterm delivery, defined as birth before the thirty-seventh week of gestation, and the admission-to-delivery interval. RESULTS: Forty-seven patients (43.5%) were delivered preterm. Receiver characteristic curve analysis showed that a level of fetal fibronectin in cervical secretions greater than or equal to 60 ng/ml had the highest diagnostic performance in predicting preterm delivery (sensitivity 80.9%, specificity 83.6%). Multiple stepwise logistic regression analysis indicated that the cervical index significantly improved the prediction of preterm delivery achieved by the fetal fibronectin assay. In patients with cervical secretion fibronectin levels greater than or equal to 60 ng/ml, survival analysis showed a shorter admission-to-delivery interval in the presence of an abnormal cervical index (p less than or equal to 0.001). CONCLUSIONS: The assay of fetal fibronectin in cervical secretions is more accurate than ultrasonographic evaluation of the uterine cervix in the prediction of preterm delivery. Combined use of the fetal fibronectin assay and the cervical index improves the diagnostic efficiency and allows prediction of the admission-to-delivery interval, identifying a subgroup of patients who may require aggressive treatment

    Chronic contained rupture of abdominal aortic aneurysms [Aneurismi dell'aorta addominale rotti cronici tamponati]

    No full text
    Background. To evaluate on the basis of our experience in 12 patients with chronic contained rupture (CCR) of an abdominal aortic aneurysm, the aetiopathogenesis of the disease, its clinical presentation, its diagnosis and the results of surgery. Methods. From January 1990 to June 1999 a total of 768 patients underwent surgery for abdominal aortic aneurysm: 662 (86.2%) were operated electively and 106 (13.8%) in emergency. Six hundred and fifty- four (85.1%) patients presented an aneurysm without fissuration or rupture (Group A), 102 (13.3%) showed a fissured aneurysmatic sac (Group B) and 12 (1.6%) presented CCR (Group C). Age, gender, risk factors, associated vascular disease and outcome of surgery were compared in the three groups and the anatomic and clinical characteristics of patients with CCR were examined. Results. No statistically significant differences were found between the 3 groups for risk factors or associated vascular disease. Patients with CCR are often normotensive and show smaller retroperitoneal haematoma compared to patients in Group B. Operative mortality in Groups A, B and C was respectively 3, 41.2 and 8.3%. Conclusions. Owing to its possible evolution into free rupture, CCR calls for rapid diagnosis and treatment. CT is the most reliable means of diagnosis. Patients with CCR are more often normotensive and present smaller retroperitoneal haematomas compared to ruptured aneurysm. Retroperitoneal drainage is recommended, together with bacterial culture of the haematoma and more frequent postoperative controls to prevent graft infection
    corecore