43 research outputs found

    Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome

    Get PDF
    Approximately 30% of the Tribolium castaneum genome is comprised of repetitive DNA. These repeats accumulate in certain regions in the assembled T. castaneum genome, these regions might be derived from the large blocks of pericentric heterochromatin in Tribolium chromosomes

    Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given its sequenced genome and efficient systemic RNA interference response, the red flour beetle <it>Tribolium castaneum </it>is a model organism well suited for reverse genetics. Even so, there is a pressing need for forward genetic analysis to escape the bias inherent in candidate gene approaches.</p> <p>Results</p> <p>To produce easy-to-maintain insertional mutations and to obtain fluorescent marker lines to aid phenotypic analysis, we undertook a large-scale transposon mutagenesis screen. In this screen, we produced more than 6,500 new <it>piggyBac </it>insertions. Of these, 421 proved to be recessive lethal, 75 were semi-lethal, and eight indicated recessive sterility, while 505 showed new enhancer-trap patterns. Insertion junctions were determined for 403 lines and often appeared to be located within transcription units. Insertion sites appeared to be randomly distributed throughout the genome, with the exception of a preference for reinsertion near the donor site.</p> <p>Conclusion</p> <p>A large collection of enhancer-trap and embryonic lethal beetle lines has been made available to the research community and will foster investigations into diverse fields of insect biology, pest control, and evolution. Because the genetic elements used in this screen are species-nonspecific, and because the crossing scheme does not depend on balancer chromosomes, the methods presented herein should be broadly applicable for many insect species.</p

    Transcriptome Profiling of the Intoxication Response of Tenebrio molitor Larvae to Bacillus thuringiensis Cry3Aa Protoxin

    Get PDF
    Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence dataset for T. molitor to date. Furthermore, the methods in this study are useful for comparative analyses in organisms lacking a sequenced genome

    The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success

    Get PDF
    The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research

    Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and -susceptible Tribolium castaneum

    Get PDF
    Background: Phosphine is a valuable fumigant to control pest populations in stored grains and grain products. However, recent studies indicate a substantial increase in phosphine resistance in stored product pests worldwide.Results: To understand the molecular bases of phosphine resistance in insects, we used RNA-Seq to compare gene expression in phosphine-resistant and susceptible laboratory populations of the red flour beetle, Tribolium castaneum. Each population was evaluated as either phosphine-exposed or no phosphine (untreated controls) in triplicate biological replicates (12 samples total). Pairwise analysis indicated there were eight genes differentially expressed between susceptible and resistant insects not exposed to phosphine (i.e., basal expression) or those exposed to phopshine (>8-fold expression and 90 % C.I.). However, 214 genes were differentially expressed among all four treatment groups at a statistically significant level (ANOVA, p < 0.05). Increased expression of 44 cytochrome P450 genes was found in resistant vs. susceptible insects, and phosphine exposure resulted in additional increases of 21 of these genes, five of which were significant among all treatment groups (p < 0.05). Expression of two genes encoding anti-diruetic peptide was 2- to 8-fold reduced in phosphine-resistant insects, and when exposed to phosphine, expression was further reduced 36- to 500-fold compared to susceptible. Phosphine-resistant insects also displayed differential expression of cuticle, carbohydrate, protease, transporter, and many mitochondrial genes, among others. Gene ontology terms associated with mitochondrial functions (oxidation biological processes, monooxygenase and catalytic molecular functions, and iron, heme, and tetrapyyrole binding) were enriched in the significantly differentially expressed dataset. Sequence polymorphism was found in transcripts encoding a known phosphine resistance gene, dihydrolipoamide dehydrogenase, in both susceptible and resistant insects. Phosphine-resistant adults also were resistant to knockdown by the pyrethroid deltamethrin, likely due to the increased cytochrome P450 expression.Conclusions: Overall, genes associated with the mitochondria were differentially expressed in resistant insects, and these differences may contribute to a reduction in overall metabolism and energy production and/or compensation in resistant insects. These data provide the first gene expression data on the response of phosphine-resistant and -susceptible insects to phosphine exposure, and demonstrate that RNA-Seq is a valuable tool to examine differences in insects that respond differentially to environmental stimuli.Peer reviewedEntomology and Plant Patholog

    The Genome of <i>Arsenophonus</i> sp. and Its Potential Contribution in the Corn Planthopper, <i>Peregrinus maidis</i>

    No full text
    The co-evolution between symbionts and their insect hosts has led to intricate functional interdependencies. Advances in DNA-sequencing technologies have not only reduced the cost of sequencing but, with the advent of highly accurate long-read methods, have also enabled facile genome assembly even using mixed genomic input, thereby allowing us to more easily assess the contribution of symbionts to their insect hosts. In this study, genomic data recently generated from Peregrinus maidis was used to assemble the genome of a bacterial symbiont, Pm Arsenophonus sp. This ~4.9-Mb assembly is one of the largest Arsenophonus genomes reported to date. The Benchmarking Universal Single-Copy Orthologs (BUSCO) result indicates that this Pm Arsenophonus assembly has a high degree of completeness, with 96% of the single-copy Enterobacterales orthologs found. The identity of the Pm Arsenophonus sp. was further confirmed by phylogenetic analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicates a major contribution by Pm Arsenophonus sp. to the biosynthesis of B vitamins and essential amino acids in P. maidis, where threonine and lysine production is carried out solely by Pm Arsenophonus sp. This study not only provides deeper insights into the evolutionary relationships between symbionts and their insect hosts, but also adds to our understanding of insect biology, potentially guiding the development of novel pest control methods

    Evaluation of Peregrinus maidis transformer-2 as a target for CRISPR-based control.

    No full text
    The corn planthopper, Peregrinus maidis, is an economically important pest of corn and sorghum. Here we report the initial steps towards developing a CRISPR-based control method, precision guided sterile insect technique (pgSIT), for this hemipteran pest. Specifically, we evaluated the potential of transformer-2 (tra-2) as a target for sterilizing insects. First, we identified tra-2 transcripts within our P. maidis transcriptome database and performed RNA interference (RNAi) to confirm functional conservation. RNAi-mediated knockdown of Pmtra-2 in nymphs transformed females into pseudomales with deformed ovipositors resembling male claspers. While males showed no overt difference in appearance, they were indeed sterile. Importantly, the results were similar to those observed in another planthopper, Nilaparvata lugens. We also used CRISPR/Cas9 genome editing to assess the impact of tra-2 knockout in injectees. CRISPR-mediated knockout of Pmtra-2 had lethal effects on embryos, and hence not many injectees reached adulthood. However, mosaic knockout of Pmtra-2 did impact female and male fertility, which supports the use of tra-2 as a target for pgSIT in this hemipteran species
    corecore