184 research outputs found

    Control of quantum fluctuations for a Yukawa interaction in the Kaluza Klein picture

    Full text link
    We study a system of fermions interacting with a scalar field, in 4+1 dimensions where the 5th dimension is compactified, using an exact functional method, where quantum fluctuations are controlled by the amplitude of the bare fermion mass. The integration of our equationsleads to the properties of the dressed Yukawa coupling, that we study at one-loop so as to show the consistency of the approach. Beyond one loop, the non-perturbative aspect of the method gives us the possibility to derive the dynamical fermion mass. The result obtained is cut off independent and this derivation proposes an alternative to the Schwinger-Dyson approach.Comment: extended discussion on the scalar effective potentia

    Fixing the Solar Neutrino Parameters with Sterile Neutrinos

    Full text link
    Neutrino mixing matrix appears to be close to bimaximal mixing, but for the solar mixing angle which is definitively smaller than forty five degrees. Whereas it seems quite easy to understand bimaximal mixing with the use of new global symmetries, as in models using Le−Lμ−LτL_e - L_\mu - L_\tau, understanding the about to eleven degrees of deviation in the observed solar angle seems less simple. We suggest that such a deviation could be due to a light sterile neutrino that mixes with the active sector. The mass scale needed to produce the effect has to be smaller than atmospheric scale, and it would introduce a new mass squared difference which should be smaller than the solar scale. We present a toy model that exemplifies these features.Comment: 19 pages, two figures. Discussion extended. References adde

    Polaron Formation in the Three-Band Peierls-Hubbard Model for Cuprate Superconductors

    Full text link
    Exact diagonalization calculations show a continuous transition from delocalized to small polaron behavior as a function of intersite electron-lattice coupling. A transition, found previously at Hartree-Fock level [Yonemitsu et al., Phys. Rev. Lett. {\bf 69}, 965 (1992)], between a magnetic and a non magnetic state does not subsist when fluctuations are included. Local phonon modes become softer close to the polaron and by comparison with optical measurements of doped cuprates we conclude that they are close to the transition region between polaronic and non-polaronic behavior. The barrier to adiabatically move a hole vanishes in that region suggesting large mobilities.Comment: 7 pages + 3 poscript figures, Revtex 3.0, MSC-199

    First principle computation of stripes in cuprates

    Full text link
    We present a first principle computation of vertical stripes in La15/8Sr1/8CuO4La_{15/8}Sr_{1/8}CuO_4 within the LDA+U method. We find that Cu centered stripes are unstable toward O centered stripes. The metallic core of the stripe is quite wide and shows reduced magnetic moments with suppressed antiferromagnetic (AF) interactions. The system can be pictured as alternating metallic and AF two-leg ladders the latter with strong AF interaction and a large spin gap. The Fermi surface shows warping due to interstripe hybridization. The periodicity and amplitude of the warping is in good agreement with angle resolved photoemission experiment. We discuss the connection with low-energy theories of the cuprates.Comment: 5 pages,4 figure

    Phase separation in a lattice model of a superconductor with pair hopping

    Get PDF
    We have studied the extended Hubbard model with pair hopping in the atomic limit for arbitrary electron density and chemical potential. The Hamiltonian considered consists of (i) the effective on-site interaction U and (ii) the intersite charge exchange interactions I, determining the hopping of electron pairs between nearest-neighbour sites. The model can be treated as a simple effective model of a superconductor with very short coherence length in which electrons are localized and only electron pairs have possibility of transferring. The phase diagrams and thermodynamic properties of this model have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. We have also obtained rigorous results for a linear chain (d=1) in the ground state. Moreover, at T=0 some results derived within the random phase approximation (and the spin-wave approximation) for d=2 and d=3 lattices and within the low density expansions for d=3 lattices are presented. Our investigation of the general case (as a function of the electron concentration and as a function of the chemical potential) shows that, depending on the values of interaction parameters, the system can exhibit not only the homogeneous phases: superconducting (SS) and nonordered (NO), but also the phase separated states (PS: SS-NO). The system considered exhibits interesting multicritical behaviour including tricritical points.Comment: 15 pages, 9 figures; pdf-ReVTeX, final version, corrected typos; submitted to Journal of Physics: Condensed Matte

    Stability of metallic stripes in the extended one-band Hubbard model

    Full text link
    Based on an unrestricted Gutzwiller approximation (GA) we investigate the stripe orientation and periodicity in an extended one-band Hubbard model. A negative ratio between next-nearest and nearest neighbor hopping t'/t, as appropriate for cuprates, favors partially filled (metallic) stripes for both vertical and diagonal configurations. At around optimal doping diagonal stripes, site centered (SC) and bond centered (BC) vertical stripes become degenerate suggesting strong lateral and orientational fluctuations. We find that within the GA the resulting phase diagram is in agreement with experiment whereas it is not in the Hartree-Fock approximation due to a strong overestimation of the stripe filling. Results are in agreement with previous calculations within the three-band Hubbard model but with the role of SC and BC stripes interchanged.Comment: 10 pages, 8 figure

    An Introduction to Extra Dimensions

    Full text link
    Models that involve extra dimensions have introduced completely new ways of looking up on old problems in theoretical physics. The aim of the present notes is to provide a brief introduction to the many uses that extra dimensions have found over the last few years, mainly following an effective field theory point of view. Most parts of the discussion are devoted to models with flat extra dimensions, covering both theoretical and phenomenological aspects. We also discuss some of the new ideas for model building where extra dimensions may play a role, including symmetry breaking by diverse new and old mechanisms. Some interesting applications of these ideas are discussed over the notes, including models for neutrino masses and proton stability. The last part of this review addresses some aspects of warped extra dimensions, and graviton localization.Comment: 39 pages. Two figures. Comments and references added. Lectures given at the XI Mexican School of Particles and Fields. Xalapa, Mexico, August 1-13, 200

    Quantum and Classical Orientational Ordering in Solid Hydrogen

    Full text link
    We present a unified view of orientational ordering in phases I, II, and III of solid hydrogen. Phases II and III are orientationally ordered, while the ordering objects in phase II are angular momenta of rotating molecules, and in phase III the molecules themselves. This concept provides quantitative explanation of the vibron softening, libron and roton spectra, and increase of the IR vibron oscillator strength in phase III. The temperature dependence of the effective charge parallels the frequency shifts of the IR and Raman vibrons. All three quantities are linear in the order parameter.Comment: Replaced with the final text, accepted for publication in PRL. 1 Fig. added. Misc. text revision

    Dumping inflaton energy density out of this world

    Get PDF
    We argue that a brane world with a warped, infinite extra dimension allows for the inflaton to decay into the bulk so that after inflation, the effective dark energy disappears from our brane. This is achieved by the redshifting of the decay products into infinity of the 5th dimension. As a consequence, all matter and CMB density perturbations could have their origin in the decay of a MSSM flat direction rather than the inflaton. We also discuss a string theoretical model where reheating after inflation may not affect the observable brane.Comment: 16 page

    Spectral properties of the dimerized and frustrated S=1/2S=1/2 chain

    Full text link
    Spectral densities are calculated for the dimerized and frustrated S=1/2 chain using the method of continuous unitary transformations (CUTs). The transformation to an effective triplon model is realized in a perturbative fashion up to high orders about the limit of isolated dimers. An efficient description in terms of triplons (elementary triplets) is possible: a detailed analysis of the spectral densities is provided for strong and intermediate dimerization including the influence of frustration. Precise predictions are made for inelastic neutron scattering experiments probing the S=1 sector and for optical experiments (Raman scattering, infrared absorption) probing the S=0 sector. Bound states and resonances influence the important continua strongly. The comparison with the field theoretic results reveals that the sine-Gordon model describes the low-energy features for strong to intermediate dimerization only at critical frustration.Comment: 21 page
    • …
    corecore