10,690 research outputs found

    Zeeman splittings of the 5D0–7F2 transitions of Eu3+ ions implanted into GaN

    Get PDF
    We report the magnetic field splittings of emission lines assigned to the 5D0–7F2 transitions of Eu3+ centres in GaN. The application of a magnetic field in the c-axis direction (B||c) leads to a splitting of the major lines at 621 nm, 622 nm and 622.8 nm into two components. The Zeeman splitting is linear with magnetic field up to 5 Tesla for each line. In contrast, a magnetic field applied in the growth plane (B┴c) does not influence the photoluminescence spectra. The estimated g-factors vary slightly from sample to sample with mean values of g|| ~2.8, ~1.5 and ~2.0 for the emission lines at 621 nm, 622 nm and 622.8 nm respectively

    Optical doping and damage formation in AIN by Eu implantation

    Get PDF
    AlN films grown on sapphire were implanted with 300 keV Eu ions to fluences from 3×1014 to 1.4×1017 atoms/cm2 in two different geometries: “channeled” along the c-axis and “random” with a 10° angle between the ion beam and the surface normal. A detailed study of implantation damage accumulation is presented. Strong ion channeling effects are observed leading to significantly decreased damage levels for the channeled implantation within the entire fluence range. For random implantation, a buried amorphous layer is formed at the highest fluences. Red Eu-related photoluminescence at room temperature is observed in all samples with highest intensities for low damage samples (low fluence and channeled implantation) after annealing. Implantation damage, once formed, is shown to be stable up to very high temperatures.FCT - POCI/FIS/57550/2004FCT - PTDC/FIS/66262/2006FCT - PTDC/CTM/100756/200

    Magnetothermal transport in the spin-1/2 chains of copper pyrazine dinitrate

    Full text link
    We present experiments on the thermal transport in the spin-1/2 chain compound copper pyrazine dinitrate Cu(C_4 H_4 N_2)(NO_3)_2. The heat conductivity shows a surprisingly strong dependence on the applied magnetic field B, characterized at low temperatures by two main features. The first one appearing at low B is a characteristic dip located at mu_B B ~ k_B T, that may arise from Umklapp scattering. The second one is a plateau-like feature in the quantum critical regime, mu_B |B-B_c| < k_B T, where B_c is the saturation field at T=0. The latter feature clearly points towards a momentum and field independent mean free path of the spin excitations, contrary to theoretical expectations.Comment: 4 pages, 4 figure

    High In-content InGaN layers synthesized by plasma-assisted molecular-beam epitaxy: growth conditions, strain relaxation and In incorporation kinetics

    Full text link
    We report the interplay between In incorporation and strain relaxation kinetics in high-In-content InxGa1-xN (x = 0.3) layers grown by plasma-assisted molecular-beam epitaxy. For In mole fractions x = 0.13-0.48, best structural and morphological quality is obtained under In excess conditions, at In accumulation limit, and at a growth temperature where InGaN decomposition is active. Under such conditions, in situ and ex situ analysis of the evolution of the crystalline structure with the growth thickness points to an onset of misfit relaxation after the growth of 40 nm, and a gradual relaxation during more than 200 nm which results in an inhomogeneous strain distribution along the growth axis. This process is associated with a compositional pulling effect, i.e. indium incorporation is partially inhibited in presence of compressive strain, resulting in a compositional gradient with increasing In mole fraction towards the surface

    Optical energies of AllnN epilayers

    Get PDF
    Optical energy gaps are measured for high-quality Al1−xInxN-on-GaN epilayers with a range of compositions around the lattice match point using photoluminescence and photoluminescence excitation spectroscopy. These data are combined with structural data to determine the compositional dependence of emission and absorption energies. The trend indicates a very large bowing parameter of 6 eV and differences with earlier reports are discussed. Very large Stokes' shifts of 0.4-0.8 eV are observed in the composition range 0.13<x<0.24, increasing approximately linearly with InN fraction despite the change of sign of the piezoelectric fiel

    Functionalizing self-assembled GaN quantum dot superlattices by Eu-implantation

    Get PDF
    Self-assembled GaN quantum dots (QDs) stacked in superlattices (SL) with AlN spacer layers were implanted with Europium ions to fluences of 1013, 1014, and 1015 cm−2. The damage level introduced in the QDs by the implantation stays well below that of thick GaN epilayers. For the lowest fluence, the structural properties remain unchanged after implantation and annealing while for higher fluences the implantation damage causes an expansion of the SL in the [0001] direction which increases with implantation fluence and is only partly reversed after thermal annealing at 1000 °C. Nevertheless, in all cases, the SL quality remains very good after implantation and annealing with Eu ions incorporated preferentially into near-substitutional cation sites. Eu3+ optical activation is achieved after annealing in all samples. In the sample implanted with the lowest fluence, the Eu3+ emission arises mainly from Eu incorporated inside the QDs while for the higher fluences only the emission from Eu inside the AlN-buffer, capping, and spacer layers is observed. © 2010 American Institute of PhysicsFCT-PTDC/CTM/100756/2008program PESSOA EGIDE/GRICESFCT-SFRH/BD/45774/2008FCT-SFRH/BD/44635/200
    corecore