92 research outputs found

    Neuroplasticity at Home: Improving Home-Based Motor Learning Through Technological Solutions. A Review

    Get PDF
    Background: Effective science-based motor rehabilitation requires high volume of individualized, intense physical training, which can be difficult to achieve exclusively through physical 1-on-1 sessions with a therapist. Home-based training, enhanced by technological solutions, could be a tool to help facilitate the important factors for neuroplastic motor improvements.Objectives: This review aimed to discover how the inclusion of modern information and communications technology in home-based training programs can promote key neuroplastic factors associated with motor learning in neurological disabilities and identify which challenges are still needed to overcome.Methods: We conducted a thorough literature search on technological home-based training solutions and categorized the different fundamental approaches that were used. We then analyzed how these approaches can be used to promote certain key factors of neuroplasticity and which challenges still need to be solved or require external personalized input from a therapist.Conclusions: The technological approaches to home-based training were divided into three categories: sensory stimuli training, digital exchange of information training, and telerehabilitation. Generally, some technologies could be characterized as easily applicable, which gave the opportunity to promote flexible scheduling and a larger overall training volume, but limited options for individualized variation and progression. Other technologies included individualization options through personalized feedback that might increase the training effect, but also increases the workload of the therapist. Further development of easily applicable and intelligent solutions, which can return precise feedback and individualized training suggestions, is needed to fully realize the potential of home-based training in motor learning activities

    To be active through indoor-climbing: an exploratory feasibility study in a group of children with cerebral palsy and typically developing children

    Get PDF
    Background: Cerebral Palsy (CP) is the most common cause of motor disabilities in children and young adults and it is also often associated with cognitive and physiological challenges. Climbing requires a multifaceted repertoire of movements, participants at all levels of expertise may be challenged functionally and cognitively, making climbing of great potential interest in (re) habilitation settings. However, until now only few research projects have investigated the feasibility of climbing as a potential activity for heightening physical activity in children with CP and the possible beneficial effects of climbing activities in populations with functional and/or cognitive challenges. The aim of this study was therefore to test the feasibility of an intensive 3 weeks indoor-climbing training program in children with CP and typically developing (TD) peers. In addition we evaluated possible functional and cognitive benefits of 3 weeks of intensive climbing training in 11 children with cerebral palsy (CP) aged 11-13 years and six of their TD peers.Method: The study was designed as a feasibility and interventional study. We evaluated the amount of time spent being physically active during the 9 indoor-climbing training sessions, and climbing abilities were measured. The participants were tested in a series of physiological, psychological and cognitive tests: two times prior to and one time following the training in order to explore possible effects of the intervention.Results: The children accomplished the training goal of a total of nine sessions within the 3-week training period. The time of physical activity during a 2: 30 h climbing session, was comparably high in the group of children with CP and the TD children. The children with CP were physically active on average for almost 16 h in total during the 3 weeks. Both groups of participants improved their climbing abilities, the children with CP managed to climb a larger proportion of the tested climbing route at the end of training and the TD group climbed faster. For the children with CP this was accompanied by significant improvements in the Sit-to-stand test (p <0.01), increased rate of force development in the least affected hand during an explosive pinch test and increased muscularmuscular coherence during a pinch precision test (p <0.05). We found no improvements in maximal hand or finger strength and no changes in cognitive abilities or psychological well-being in any of the groups.Conclusions: These findings show that it is possible to use climbing as means to make children with CP physically active. The improved motor abilities obtained through the training is likely reflected by increased synchronization between cortex and muscles, which results in a more efficient motor unit recruitment that may be transferred to daily functional abilities

    Factors correlated with running economy among elite middle- and long-distance runners

    Get PDF
    Abstract Running economy (RE) at a given submaximal running velocity is defined as oxygen consumption per minute per kg body mass. We investigated RE in a group of 12 male elite runners of national class. In addition to RE at 14 and 18 km h−1 we measured the maximal oxygen consumption (VO2max) and anthropometric measures including the moment arm of the Achilles tendon (LAch), shank and foot volumes, and muscular fascicle lengths. A 3‐D biomechanical movement analysis of treadmill running was also conducted. RE was on average 47.8 and 62.3 ml O2 min−1 kg−1 at 14 and 18 km h−1. Maximal difference between the individual athletes was 21% at 18 km h−1. Mechanical work rate was significantly correlated with VO2 measured in L min−1 at both running velocities. However, RE and relative work rate were not significantly correlated. LAch was significantly correlated with RE at 18 km h−1 implying that a short moment arm is advantageous regarding RE. Neither foot volume nor shank volume were significantly correlated to RE. Relative muscle fascicle length of m. soleus was significantly correlated with RE at 18 km h−1. Whole body stiffness and leg stiffness were significantly correlated with LAch indicating that a short moment arm coincided with high stiffness. It is concluded that a short LAch is correlated with RE. Probably, a short LAch allows for storage of a larger amount of elastic energy in the tendon and influences the force–velocity relation toward a lower contraction velocity

    Twenty weeks of home-based interactive training of children with cerebral palsy improves functional abilities

    Get PDF
    BACKGROUND: Home-based training is becoming ever more important with increasing demands on the public health systems. We investigated whether individualized and supervised interactive home-based training delivered through the internet improves functional abilities in children with cerebral palsy (CP). METHODS: Thirty four children with CP (aged 9–16; mean age 10.9 ± 2.4 years) (GMFCS I-II; MACS I-II) were included in this non-randomized controlled clinical training study. 12 children (aged 7–16; mean age: 11.3+/−0.9 years) were allocated to a control group in which measurements were performed with 20 weeks interval without any intervening training. Daily activities, functional abilities of upper- and lower limbs, and balance were evaluated before, immediately after training and 12 weeks after training. The training consisted of 30 min daily home-based training for 20 weeks delivered through the internet. RESULTS: The training group on average completed 17 min daily training for the 20 week period (total of 40 h of training). The training group showed significant improvements of daily activities (AMPS), upper limb function (AHA) and functional tests of lower limbs (sit to stand, lateral step up, half knee to standing) after 20 weeks of training. No difference was found between the test after 20 weeks of training and the test 12 weeks after training. No significance was reached for balance after training. No difference was found for any parameter for the control group. CONCLUSIONS: Interactive home training of children with CP is an efficient way to deliver training, which can enable functional motor improvements and increased activity to perform daily activities. TRIAL REGISTRATION: ISRCTN13188513. Date of registration: 04/12/201

    Home-based, early intervention with mechatronic toys for preterm infants at risk of neurodevelopmental disorders (CARETOY):a RCT protocol

    Get PDF
    Background: Preterm infants are at risk for neurodevelopmental disorders, including motor, cognitive or behavioural problems, which may potentially be modified by early intervention. The EU CareToy Project Consortium ( http://www.caretoy.eu ) has developed a new modular system for intensive, individualized, home-based and family-centred early intervention, managed remotely by rehabilitation staff. A randomised controlled trial (RCT) has been designed to evaluate the efficacy of CareToy training in a first sample of low-risk preterm infants. Methods/Design: The trial, randomised, multi-center, evaluator-blinded, parallel group controlled, is designed according to CONSORT Statement. Eligible subjects are infants born preterm without major complications, aged 3-9 months of corrected age with specific gross-motor abilities defined by Ages & Stages Questionnaire scores. Recruited infants, whose parents will sign a written informed consent for participation, will be randomized in CareToy training and control groups at baseline (T0). CareToy group will perform four weeks of personalized activities with the CareToy system, customized by the rehabilitation staff. The control group will continue standard care. Infant Motor Profile Scale is the primary outcome measure and a total sample size of 40 infants has been established. Bayley-Cognitive subscale, Alberta Infants Motor Scale and Teller Acuity Cards are secondary outcome measures. All measurements will be performed at T0 and at the end of training/control period (T1). For ethical reasons, after this first phase infants enrolled in the control group will perform the CareToy training, while the training group will continue standard care. At the end of open phase (T2) all infants will be assessed as at T1. Further assessment will be performed at 18 months corrected age (T3) to evaluate the long-term effects on neurodevelopmental outcome. Caregivers and rehabilitation staff will not be blinded whereas all the clinical assessments will be performed, videotaped and scored by blind assessors. The trial is ongoing and it is expected to be completed by April 2015. Discussion: This paper describes RCT methodology to evaluate CareToy as a new tool for early intervention in preterm infants, first contribution to test this new type of system. It presents background, hypotheses, outcome measures and trial methodology. Trial registration: ClinicalTrials.gov: NCT01990183 . EU grant ICT-2011.5.1-287932

    Transcutaneous spinal direct current stimulation increases corticospinal transmission and enhances voluntary motor output in humans

    Get PDF
    Optimization of motor performance is of importance in daily life, in relation to recovery following injury as well as for elite sports performance. The present study investigated whether transcutaneous spinal direct current stimulation (tsDCS) may enhance voluntary ballistic activation of ankle muscles and descending activation of spinal motor neurons in able‐bodied adults. Forty‐one adults (21 men; 24.0 ± 3.2 years) participated in the study. The effect of tsDCS on ballistic motor performance and plantar flexor muscle activation was assessed in a double‐blinded sham‐controlled cross‐over experiment. In separate experiments, the underlying changes in excitability of corticospinal and spinal pathways were probed by evaluating soleus (SOL) motor evoked potentials (MEPs) following single‐pulse transcranial magnetic stimulation (TMS) over the primary motor cortex, SOL H‐reflexes elicited by tibial nerve stimulation and TMS‐conditioning of SOL H‐reflexes. Measures were obtained before and after cathodal tsDCS over the thoracic spine (T11‐T12) for 10 min at 2.5 mA. We found that cathodal tsDCS transiently facilitated peak acceleration in the ballistic motor task compared to sham tsDCS. Following tsDCS, SOL MEPs were increased without changes in H‐reflex amplitudes. The short‐latency facilitation of the H‐reflex by subthreshold TMS, which is assumed to be mediated by the fast conducting monosynaptic corticomotoneuronal pathway, was also enhanced by tsDCS. We argue that tsDCS briefly facilitates voluntary motor output by increasing descending drive from corticospinal neurones to spinal plantar flexor motor neurons. tsDCS can thus transiently promote within‐session CNS function and voluntary motor output and holds potential as a technique in the rehabilitation of motor function following central nervous lesions

    User-Centered Design of a National Medical Registry for Tick-Borne Diseases

    Get PDF
    Tick-borne diseases are increasing in a global perspective, with Lyme disease and tick-borne encephalitis as the most frequent. The Norwegian National Ad-visory Unit on Tick-borne Diseases is preparing the development of a national medical registry for clinical follow-up of patients with tick-borne diseases based on the best practice guidelines and for research purposes. This paper presents the methodological approach of a user-centered design process applied in the in-itial phase of the registry development. A user workshop identified user needs, requirements and proposed a service workflow for the registry operation. As the next step, a simulation of the proposed service workflow was performed in a clinical laboratory together with end-user groups. The main contribution of this paper lies on the methodological descriptions of the user-centered design pro-cess, and how to facilitate the active contribution of end-users in a technical de-velopment process within a health care context.User-Centered Design of a National Medical Registry for Tick-Borne DiseasesacceptedVersionNivå

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
    corecore