1,875 research outputs found

    Deterministic Walks in Quenched Random Environments of Chaotic Maps

    Full text link
    This paper concerns the propagation of particles through a quenched random medium. In the one- and two-dimensional models considered, the local dynamics is given by expanding circle maps and hyperbolic toral automorphisms, respectively. The particle motion in both models is chaotic and found to fluctuate about a linear drift. In the proper scaling limit, the cumulative distribution function of the fluctuations converges to a Gaussian one with system dependent variance while the density function shows no convergence to any function. We have verified our analytical results using extreme precision numerical computations.Comment: 18 pages, 9 figure

    A real Lorentz-FitzGerald contraction

    Get PDF
    Many condensed matter systems are such that their collective excitations at low energies can be described by fields satisfying equations of motion formally indistinguishable from those of relativistic field theory. The finite speed of propagation of the disturbances in the effective fields (in the simplest models, the speed of sound) plays here the role of the speed of light in fundamental physics. However, these apparently relativistic fields are immersed in an external Newtonian world (the condensed matter system itself and the laboratory can be considered Newtonian, since all the velocities involved are much smaller than the velocity of light) which provides a privileged coordinate system and therefore seems to destroy the possibility of having a perfectly defined relativistic emergent world. In this essay we ask ourselves the following question: In a homogeneous condensed matter medium, is there a way for internal observers, dealing exclusively with the low-energy collective phenomena, to detect their state of uniform motion with respect to the medium? By proposing a thought experiment based on the construction of a Michelson-Morley interferometer made of quasi-particles, we show that a real Lorentz-FitzGerald contraction takes place, so that internal observers are unable to find out anything about their `absolute ' state of motion. Therefore, we also show that an effective but perfectly defined relativistic world can emerge in a fishbowl world situated inside a Newtonian (laboratory) system. This leads us to reflect on the various levels of description in physics, in particular regarding the quest towards a theory of quantum gravity.Comment: 6 pages, no figures. Minor changes reflect published versio

    Rotation of a spheroid in a simple shear at small Reynolds number

    Full text link
    We derive an effective equation of motion for the orientational dynamics of a neutrally buoyant spheroid suspended in a simple shear flow, valid for arbitrary particle aspect ratios and to linear order in the shear Reynolds number. We show how inertial effects lift the degeneracy of the Jeffery orbits and determine the stabilities of the log-rolling and tumbling orbits at infinitesimal shear Reynolds numbers. For prolate spheroids we find stable tumbling in the shear plane, log-rolling is unstable. For oblate particles, by contrast, log-rolling is stable and tumbling is unstable provided that the aspect ratio is larger than a critical value. When the aspect ratio is smaller than this value tumbling turns stable, and an unstable limit cycle is born.Comment: 25 pages, 5 figure

    ANALISIS DAN PERANCANGAN SISTEM BASISDATA BERBASISKAN WEB PADA SMU BHINNEKA TUNGGAL IKA

    Get PDF
    ANALISIS DAN PERANCANGAN SISTEM BASISDATA BERBASISKAN WEB PADA SMU BHINNEKA TUNGGAL IK

    The Averaging Problem in Cosmology and Macroscopic Gravity

    Full text link
    The averaging problem in cosmology and the approach of macroscopic gravity to resolve the problem is discussed. The averaged Einstein equations of macroscopic gravity are modified on cosmological scales by the macroscopic gravitational correlation tensor terms as compared with the Einstein equations of general relativity. This correlation tensor satisfies a system of structure and field equations. An exact cosmological solution to the macroscopic gravity equations for a constant macroscopic gravitational connection correlation tensor for a flat spatially homogeneous, isotropic macroscopic space-time is presented. The correlation tensor term in the macroscopic Einstein equations has been found to take the form of either a negative or positive spatial curvature term. Thus, macroscopic gravity provides a cosmological model for a flat spatially homogeneous, isotropic Universe which obeys the dynamical law for either an open or closed Universe.Comment: 8 pages, LaTeX, ws-ijmpa.cls, few style and typo corrections. Based on the plenary talk given at the Second Stueckelberg Workshop, ICRANet Coordinating Center, Pescara, Italy, September 3-7, 2007. To appear in International Journal of Modern Physics A (2008

    Single thyroid nodules

    Get PDF
    No Abstrac

    Lorentzian regularization and the problem of point-like particles in general relativity

    Get PDF
    The two purposes of the paper are (1) to present a regularization of the self-field of point-like particles, based on Hadamard's concept of ``partie finie'', that permits in principle to maintain the Lorentz covariance of a relativistic field theory, (2) to use this regularization for defining a model of stress-energy tensor that describes point-particles in post-Newtonian expansions (e.g. 3PN) of general relativity. We consider specifically the case of a system of two point-particles. We first perform a Lorentz transformation of the system's variables which carries one of the particles to its rest frame, next implement the Hadamard regularization within that frame, and finally come back to the original variables with the help of the inverse Lorentz transformation. The Lorentzian regularization is defined in this way up to any order in the relativistic parameter 1/c^2. Following a previous work of ours, we then construct the delta-pseudo-functions associated with this regularization. Using an action principle, we derive the stress-energy tensor, made of delta-pseudo-functions, of point-like particles. The equations of motion take the same form as the geodesic equations of test particles on a fixed background, but the role of the background is now played by the regularized metric.Comment: 34 pages, to appear in J. Math. Phy

    Observation of light dragging in rubidium vapor cell

    Full text link
    We report on the experimental demonstration of light dragging effect due to atomic motion in a rubidium vapor cell. We found that the minimum group velocity is achieved for light red-shifted from the center of the atomic resonance, and that the value of this shift increases with decreasing group velocity, in agreement with the theoretical predictions by Kocharovskaya, Rostovtsev, and Scully [Phys. Rev. Lett. {\bf 86}, 628 (2001)].Comment: 4 pages 4 figures, submitted to PR

    Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase.

    Get PDF
    Antigen-specific immune responses to protein drugs can hinder efficacy and compromise safety because of drug neutralization and secondary clinical complications. We report a tolerance induction strategy to prevent antigen-specific humoral immune responses to therapeutic proteins. Our modular, biomolecular approach involves engineering tolerizing variants of proteins such that they bind erythrocytes in vivo upon injection, on the basis of the premise that aged erythrocytes and the payloads they carry are cleared tolerogenically, driving the deletion of antigen-specific T cells. We demonstrate that binding the clinical therapeutic enzyme Escherichia coli l-asparaginase to erythrocytes in situ antigen-specifically abrogates development of antibody titers by >1000-fold and extends the pharmacodynamic effect of the drug 10-fold in mice. Additionally, a single pretreatment dose of erythrocyte-binding asparaginase tolerized mice to multiple subsequent doses of the wild-type enzyme. This strategy for reducing antigen-specific humoral responses may enable more effective and safer treatment with therapeutic proteins and drug candidates that are hampered by immunogenicity
    • 

    corecore