33 research outputs found
Potent Anticancer Activity of CXCR4-Targeted Nanostructured Toxins in Aggressive Endometrial Cancer Models
Patients with advanced endometrial cancer (EC) show poor outcomes. Thus, the development of new therapeutic approaches to prevent metastasis development in high-risk patients is an unmet need. CXCR4 is overexpressed in EC tumor tissue, epitomizing an unexploited therapeutic target for this malignancy. The in vitro antitumor activity of two CXCR4-targeted nanoparticles, including either the C. diphtheriae (T22-DITOX-H6) or P. aeruginosa (T22-PE24-H6) toxin, was evaluated using viability assays. Apoptotic activation was assessed by DAPI and caspase-3 and PARP cleavage in cell blocks. Both nanotoxins were repeatedly administrated to a subcutaneous EC mouse model, whereas T22-DITOX-H6 was also used in a highly metastatic EC orthotopic model. Tumor burden was assessed through bioluminescence, while metastatic foci and toxicity were studied using histological or immunohistochemical analysis. We found that both nanotoxins exerted a potent antitumor effect both in vitro and in vivo via apoptosis and extended the survival of nanotoxin-treated mice without inducing any off-target toxicity. Repeated T22-DITOX-H6 administration in the metastatic model induced a dramatic reduction in tumor burden while significantly blocking peritoneal, lung and liver metastasis without systemic toxicity. Both nanotoxins, but especially T22-DITOX-H6, represent a promising therapeutic alternative for EC patients that have a dismal prognosis and lack effective therapies
Protumorigenic effects of Snail-expression fibroblasts on colon cancer cells
et al.Snail1 is a transcriptional factor that plays an important role in epithelial–mesenchymal transition and in the acquisition of invasive properties by epithelial cells. In colon tumors, Snail1 expression in the stroma correlates with lower specific survival of cancer patients. However, the role(s) of Snail1 expression in stroma and its association with patients' survival have not been determined. We used human primary carcinoma-associated fibroblasts (CAFs) or normal fibroblasts (NFs) and fibroblast cell lines to analyze the effects of Snail1 expression on the protumorigenic capabilities in colon cancer cells. Snail1 expression was higher in CAFs than in NFs and, as well as α-SMA, a classic marker of activated CAFs. Moreover, in tumor samples from 50 colon cancer patients, SNAI1 expression was associated with expression of other CAF markers, such as α-SMA and fibroblast activation protein. Interestingly, coculture of CAFs with colon cells induced a significant increase in epithelial cell migration and proliferation, which was associated with endogenous SNAI1 expression levels. Ectopic manipulation of Snail1 in fibroblasts demonstrated that Snail1 expression controlled migration as well as proliferation of cocultured colon cancer cells in a paracrine manner. Furthermore, expression of Snail1 in fibroblasts was required for the coadjuvant effect of these cells on colon cancer cell growth and invasion when coxenografted in nude mice. Finally, cytokine profile changes, particularly MCP-3 expression, in fibroblasts are put forward as mediators of Snail1-derived effects on colon tumor cell migration. In summary, these studies demonstrate that Snail1 is necessary for the protumorigenic effects of fibroblasts on colon cancer cells.This research was supported by the PI12/02037, Fundación Científica AECC, SAF2010-20750, S2010/BMD-2344, RTICC-RD12/0036/0041 and by the Fundación Banco Santander. Antonio García de Herreros’ laboratory was supported by RTICC-RD12/0036/0005 and SAF 2010-16089. Ma Jesús Larriba’s laboratory was supported by RD12/0036/0021. Cristina Peña and José Miguel García are recipients of Miguel Servet Contracts from the Instituto de Salud Carlos III.Peer reviewe
Lymphocyte infiltration and antitumoral effect promoted by cytotoxic inflammatory proteins formulated as self-assembling, protein-only nanoparticles
Two human proteins involved in the inflammatory cell death, namely Gasdermin D (GSDMD) and the Mixed Lineage Kinase Domain-Like (MLKL) protein have been engineered to accommodate an efficient ligand of the tumoral cell marker CXCR4, and a set of additional peptide agents that allow their spontaneous self-assembling. Upon production in bacterial cells and further purification, both proteins organized as stable nanoparticles of 46 and 54 nm respectively, that show, in this form, a moderate but dose-dependent cytotoxicity in cell culture. In vivo, and when administered in mouse models of colorectal cancer through repeated doses, the nanoscale forms of tumor-targeted GSDMD and, at a lesser extent, of MLKL promoted CD8+ and CD20+ lymphocyte infiltration in the tumor and an important reduction of tumor size, in absence of systemic toxicity. The potential of these novel pharmacological agents as anticancer drugs is discussed in the context of synergistic approaches to more effective cancer treatments
High-precision targeting and destruction of cancer-associated PDGFR-β+ stromal fibroblasts through self-assembling, protein-only nanoparticles
Altres ajuts: acords transformatius de la UABThe need for more effective and precision medicines for cancer has pushed the exploration of new materials appropriate for drug delivery and imaging, and alternative receptors for targeting. Among the most promising strategies, finding suitable cell surface receptors and targeting agents for cancer-associated platelet derived growth factor receptor β (PDGFR-β)+ stromal fibroblasts is highly appealing. As a neglected target, this cell type mechanically and biologically supports the growth, progression, and infiltration of solid tumors in non-small cell lung, breast, pancreatic, and colorectal cancers. We have developed a family of PDGFR-β-targeted nanoparticles based on biofabricated, self-assembling proteins, upon hierarchical and iterative selective processes starting from four initial candidates. The modular protein PDGFD-GFP-H6 is well produced in recombinant bacteria, resulting in structurally robust oligomeric particles that selectively penetrates into PDGFR-β+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-β ligand PDGFD. Upon in vivo administration, these GFP-carrying protein nanoparticles precisely accumulate in tumor tissues and enlighten them for IVIS observation. When GFP is replaced by a microbial toxin, selective tumor tissue destruction is observed associated with a significant reduction in tumor volume growth. The presented data validate the PDGFR-β/PDGFD pair as a promising toolbox for targeted drug delivery in the tumor microenvironment and oligomeric protein nanoparticles as a powerful instrument to mediate highly selective biosafe targeting in cancer through non-cancer cells. Statement of significance: We have developed a transversal platform for nanoparticle-based drug delivery into cancer-associated fibroblasts. This is based on the engineered modular protein PDGFD-GFP-H6 that spontaneously self-assemble and selectively penetrates into PDGFR-β+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-β ligand PDGFD. In vivo, these protein nanoparticles accumulate in tumor and when incorporating a microbial toxin, they destroy tumor tissues with a significant reduction in tumor volume, in absence of side toxicities. The data presented here validate the PDGFR-β/PDGFD pair as a fully versatile toolbox for targeted drug delivery in the tumor microenvironment intended as a synergistic treatment
Novel Endometrial Cancer Models Using Sensitive Metastasis Tracing for CXCR4-Targeted Therapy in Advanced Disease
Advanced endometrial cancer (EC) lacks therapy, thus, there is a need for novel treatment targets. CXCR4 overexpression is associated with a poor prognosis in several cancers, whereas its inhibition prevents metastases. We assessed CXCR4 expression in EC in women by using IHC. Orthotopic models were generated with transendometrial implantation of CXCR4-transduced EC cells. After in vitro evaluation of the CXCR4-targeted T22-GFP-H6 nanocarrier, subcutaneous EC models were used to study its uptake in tumor and normal organs. Of the women, 91% overexpressed CXCR4, making them candidates for CXCR4-targeted therapies. Thus, we developed CXCR4(+) EC mouse models to improve metastagenesis compared to current models and to use them to develop novel CXCR4-targeted therapies for unresponsive EC. It showed enhanced dissemination, especially in the lungs and liver, and displayed 100% metastasis penetrance at all clinically relevant sites with anti-hVimentin IHC, improving detection sensitivity. Regarding the CXCR4-targeted nanocarrier, 60% accumulated in the SC tumor; therefore, selectively targeting CXCR4(+) cancer cells, without toxicity in non-tumor organs. Our CXCR4(+) EC models will allow testing of novel CXCR4-targeted drugs and development of nanomedicines derived from T22-GFP-H6 to deliver drugs to CXCR4(+) cells in advanced EC. This novel approach provides a therapeutic option for women with metastatic, high risk or recurrent EC that have a dismal prognosis and lack effective therapies
Self-assembling protein nanocarrier for selective delivery of cytotoxic polypeptides to CXCR4 + head and neck squamous cell carcinoma tumors
Altres ajuts:Lorena Alba-Castellón was supported by a postdoctoral fellowship from AECC (Spanish Association of Cancer Research, Spain). Antonio Villaverde received an Icrea Academia Award (Spain). Ugutz Unzueta was also supported by Grant PERIS SLT006/17/00093 from la Generalitat de Catalunya (Spain) and Miguel Servet fellowship (CP19/00028). CIBER-BBN (Spain) [CB06/01/1031 and 4NanoMets to Ramon Mangues, VENOM4CANCER to Antonio Villaverde, NANOREMOTE to Esther Vázquez, and NANOSCAPE to Ugutz Unzueta].Loco-regional recurrences and distant metastases represent the main cause of head and neck squamous cell carcinoma (HNSCC) mortality. The overexpression of chemokine receptor 4 (CXCR4) in HNSCC primary tumors associates with higher risk of developing loco-regional recurrences and distant metastases, thus making CXCR4 an ideal entry pathway for targeted drug delivery. In this context, our group has generated the self-assembling protein nanocarrier T22-GFP-H6, displaying multiple T22 peptidic ligands that specifically target CXCR4. This study aimed to validate T22-GFP-H6 as a suitable nanocarrier to selectively deliver cytotoxic agents to CXCR4 + tumors in a HNSCC model. Here we demonstrate that T22-GFP-H6 selectively internalizes in CXCR4 + HNSCC cells, achieving a high accumulation in CXCR4 + tumors in vivo, while showing negligible nanocarrier distribution in non-tumor bearing organs. Moreover, this T22-empowered nanocarrier can incorporate bacterial toxin domains to generate therapeutic nanotoxins that induce cell death in CXCR4-overexpressing tumors in the absence of histological alterations in normal organs. Altogether, these results show the potential use of this T22-empowered nanocarrier platform to incorporate polypeptidic domains of choice to selectively eliminate CXCR4 + cells in HNSCC. Remarkably, to our knowledge, this is the first study testing targeted protein-only nanoparticles in this cancer type, which may represent a novel treatment approach for HNSCC patients. The self-assembling protein nanocarrier T22-GFP-H6, that specifically targets CXCR4, was designed to selectively deliver cytotoxic agents to CXCR4 + tumors in a head and neck squamous cell carcinoma model
A Novel CXCR4-Targeted Diphtheria Toxin Nanoparticle Inhibits Invasion and Metastatic Dissemination in a Head and Neck Squamous Cell Carcinoma Mouse Model
Altres ajuts: EU COST Action CA 17140; CB06/01/1031; 4NanoMets; VENOM4CANCER; NANOREMOTE; NANOSCAPE; Josep Carreras Leukemia Research Institute (Spain); AECC (Spanish Association of Cancer Research, Spain); Generalitat de Catalunya: PERIS SLT006/17/00093Loco-regional recurrences and metastasis represent the leading causes of death in head and neck squamous cell carcinoma (HNSCC) patients, highlighting the need for novel therapies. Chemokine receptor 4 (CXCR4) has been related to loco-regional and distant recurrence and worse patient prognosis. In this regard, we developed a novel protein nanoparticle, T22-DITOX-H6, aiming to selectively deliver the diphtheria toxin cytotoxic domain to CXCR4+ HNSCC cells. The antimetastatic effect of T22-DITOX-H6 was evaluated in vivo in an orthotopic mouse model. IVIS imaging system was utilized to assess the metastatic dissemination in the mouse model. Immunohistochemistry and histopathological analyses were used to study the CXCR4 expression in the cancer cells, to evaluate the effect of the nanotoxin treatment, and its potential off-target toxicity. In this study, we report that CXCR4+ cancer cells were present in the invasive tumor front in an orthotopic mouse model. Upon repeated T22-DITOX-H6 administration, the number of CXCR4+ cancer cells was significantly reduced. Similarly, nanotoxin treatment effectively blocked regional and distant metastatic dissemination in the absence of systemic toxicity in the metastatic HNSCC mouse model. The repeated administration of T22-DITOX-H6 clearly abrogates tumor invasiveness and metastatic dissemination without inducing any off-target toxicity. Thus, T22-DITOX-H6 holds great promise for the treatment of CXCR4+ HNSCC patients presenting worse prognosis
An Auristatin nanoconjugate targeting CXCR4+ leukemic cells blocks acute myeloid leukemia dissemination
Altres ajuts: EU COST Action CA 17140 to R.M. A grant from La Generalitat de Catalunya (PERIS) [SLT002/16/00433 to J.S.]; a grant from the Generalitat de Catalunya CERCA Programme. The work was also supported by PERIS program from the health department of the Generalitat de Catalunya (SLT006/17/00093) [grated to U.U.] and Fundación Española de Hematología y Hemoterapia (FEHH) [granted to V.P.]. Finally, AV received an ICREA ACADEMIA Award supported by the Catalan Government.Background: current acute myeloid leukemia (AML) therapy fails to eliminate quiescent leukemic blasts in the bone marrow, leading to about 50% of patient relapse by increasing AML burden in the bone marrow, blood, and extramedullar sites. We developed a protein-based nanoparticle conjugated to the potent antimitotic agent Auristatin E that selectively targets AML blasts because of their CXCR4 receptor overexpression (CXCR4+) as compared to normal cells. The therapeutic rationale is based on the involvement of CXCR4 overexpression in leukemic blast homing and quiescence in the bone marrow, and the association of these leukemic stem cells with minimal residual disease, dissemination, chemotherapy resistance, and lower patient survival. - Methods: monomethyl Auristatin E (MMAE) was conjugated with the CXCR4 targeted protein nanoparticle T22-GFP-H6 produced in E. coli. Nanoconjugate internalization and in vitro cell viability assays were performed in CXCR4+ AML cell lines to analyze the specific antineoplastic activity through the CXCR4 receptor. In addition, a disseminated AML animal model was used to evaluate the anticancer effect of T22-GFP-H6-Auristatin in immunosuppressed NSG mice (n = 10/group). U of Mann-Whitney test was used to consider if differences were significant between groups. - Results: T22-GFP-H6-Auristatin was capable to internalize and exert antineoplastic effects through the CXCR4 receptor in THP-1 and SKM-1 CXCR4+ AML cell lines. In addition, repeated administration of the T22-GFP-H6-Auristatin nanoconjugate (9 doses daily) achieves a potent antineoplastic activity by internalizing specifically in the leukemic cells (luminescent THP-1) to selectively eliminate them. This leads to reduced involvement of leukemic cells in the bone marrow, peripheral blood, liver, and spleen, while avoiding toxicity in normal tissues in a luminescent disseminated AML mouse model. - Conclusions: a novel nanoconjugate for targeted drug delivery of Auristatin reduces significantly the acute myeloid leukemic cell burden in the bone marrow and blood and blocks its dissemination to extramedullar organs in a CXCR4+ AML model. This selective drug delivery approach validates CXCR4+ AML cells as a target for clinical therapy, not only promising to improve the control of leukemic dissemination but also dramatically reducing the severe toxicity of classical AML therapy
A multivalent Ara-C-prodrug nanoconjugate achieves selective ablation of leukemic cells in an acute myeloid leukemia mouse model
Altres ajuts: EU COST Action CA 17140 ; CIBER-BBN [CB06/01/1031 and 4NanoMets to R.M., VENOM4CANCER to A.V., NANOREMOTE to E.V. and NANOLINK to U·U.] ; CERCA Programme/Generalitat de Catalunya ; ICREA Academia Award. Fundació la Marató de TV3 201-941-30-31-32.Current therapy in acute myeloid leukemia (AML) is based on chemotherapeutic drugs administered at high doses, lacking targeting selectivity and displaying poor therapeutic index because of severe adverse effects. Here, we develop a novel nanoconjugate that combines a self-assembled, multivalent protein nanoparticle, targeting the CXCR4 receptor, with an Oligo-Ara-C prodrug, a pentameric form of Ara-C, to highly increase the delivered payload to target cells. This 13.4 nm T22-GFP-H6-Ara-C nanoconjugate selectively eliminates CXCR4 AML cells, which are protected by its anchoring to the bone marrow (BM) niche, being involved in AML progression and chemotherapy resistance. This nanoconjugate shows CXCR4-dependent internalization and antineoplastic activity in CXCR4 AML cells in vitro. Moreover, repeated T22-GFP-H6-Ara-C administration selectively eliminates CXCR4 leukemic cells in BM, spleen and liver. The leukemic dissemination blockage induced by T22-GFP-H6-Ara-C is significantly more potent than buffer or Oligo-Ara-C-treated mice, showing no associated on-target or off-target toxicity and, therefore, reaching a highly therapeutic window. In conclusion, T22-GFP-H6-Ara-C exploits its 11 ligands-multivalency to enhance target selectivity, while the Oligo-Ara-C prodrug multimeric form increases 5-fold its payload. This feature combination offers an alternative nanomedicine with higher activity and greater tolerability than current intensive or non-intensive chemotherapy for AML patients
Protumorigenic effects of Snail-expression fibroblasts on colon cancer cells
et al.Snail1 is a transcriptional factor that plays an important role in epithelial–mesenchymal transition and in the acquisition of invasive properties by epithelial cells. In colon tumors, Snail1 expression in the stroma correlates with lower specific survival of cancer patients. However, the role(s) of Snail1 expression in stroma and its association with patients' survival have not been determined. We used human primary carcinoma-associated fibroblasts (CAFs) or normal fibroblasts (NFs) and fibroblast cell lines to analyze the effects of Snail1 expression on the protumorigenic capabilities in colon cancer cells. Snail1 expression was higher in CAFs than in NFs and, as well as α-SMA, a classic marker of activated CAFs. Moreover, in tumor samples from 50 colon cancer patients, SNAI1 expression was associated with expression of other CAF markers, such as α-SMA and fibroblast activation protein. Interestingly, coculture of CAFs with colon cells induced a significant increase in epithelial cell migration and proliferation, which was associated with endogenous SNAI1 expression levels. Ectopic manipulation of Snail1 in fibroblasts demonstrated that Snail1 expression controlled migration as well as proliferation of cocultured colon cancer cells in a paracrine manner. Furthermore, expression of Snail1 in fibroblasts was required for the coadjuvant effect of these cells on colon cancer cell growth and invasion when coxenografted in nude mice. Finally, cytokine profile changes, particularly MCP-3 expression, in fibroblasts are put forward as mediators of Snail1-derived effects on colon tumor cell migration. In summary, these studies demonstrate that Snail1 is necessary for the protumorigenic effects of fibroblasts on colon cancer cells.This research was supported by the PI12/02037, Fundación Científica AECC, SAF2010-20750, S2010/BMD-2344, RTICC-RD12/0036/0041 and by the Fundación Banco Santander. Antonio García de Herreros’ laboratory was supported by RTICC-RD12/0036/0005 and SAF 2010-16089. Ma Jesús Larriba’s laboratory was supported by RD12/0036/0021. Cristina Peña and José Miguel García are recipients of Miguel Servet Contracts from the Instituto de Salud Carlos III.Peer reviewe