656 research outputs found
A common origin of magnetism from planets to white dwarfs
This is the final version of the article. Available from the publisher via the DOI in this record.Isolated magnetic white dwarfs have field strengths ranging from kilogauss to gigagauss. However, the origin of the magnetic field has not been hitherto elucidated. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of their progenitor stars, or are the result of binary interactions, or, finally, they are produced by other internal physical mechanisms during the cooling of the white dwarf itself, remains a mystery. At sufficiently low temperatures, white dwarfs crystallize. Upon solidification, phase separation of its main constituents, 12C and 16O, and of the impurities left by previous evolution occurs. This process leads to the formation of a Rayleigh–Taylor unstable liquid mantle on top of a solid core. This convective region, as it occurs in solar system planets like the Earth and Jupiter, can produce a dynamo able to yield magnetic fields of strengths of up to 0.1 MG, thus providing a mechanism that could explain magnetism in single white dwarfs.This work has been supported by MINECO grants ESP2013-
47637-P, ESP2015-66134-R (J.I.), and AYA2014-59084-P
(E.G.-B.), by the European Union FEDER funds, by grants
2014SGR1458 (J.I.), 2014SGR0038 (E.G.-B.) of the AGAUR,
and by the CERCS program of the Generalitat de Catalunya
A white dwarf merger as progenitor of the anomalous X-ray pulsar 4U 0142+61?
It has been recently proposed that massive fast-rotating highly-magnetized
white dwarfs could describe the observational properties of some of Soft
Gamma-Ray Repeaters (SGRs) and Anomalous X-Ray Pulsars (AXPs). Moreover, it has
also been shown that high-field magnetic (HFMWDs) can be the outcome of white
dwarf binary mergers. The products of these mergers consist of a hot central
white dwarf surrounded by a rapidly rotating disk. Here we show that the merger
of a double degenerate system can explain the characteristics of the peculiar
AXP 4U 0142+61. This scenario accounts for the observed infrared excess. We
also show that the observed properties of 4U 0142+6 are consistent with an
approximately 1.2 M_{\sun} white dwarf, remnant of the coalescence of an
original system made of two white dwarfs of masses 0.6\, M_{\sun} and 1.0\,
M_{\sun}. Finally, we infer a post-merging age kyr,
and a magnetic field G. Evidence for such a magnetic
field may come from the possible detection of the electron cyclotron absorption
feature observed between the and bands at Hz in the
spectrum of 4U 0142+61.Comment: to appear in ApJ Letter
Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts
Barley powdery mildew, Blumeria graminis f. sp. hordei (Bgh), is an obligate biotrophic ascomycete fungal pathogen that can grow and reproduce only on living cells of wild or domesticated barley (Hordeum sp.). Domestication and deployment of resistant barley cultivars by humans selected for amplification of Bgh isolates with different virulence combinations. We sequenced the genomes of two European Bgh isolates, A6 and K1, for comparative analysis with the reference genome of isolate DH14. This revealed a mosaic genome structure consisting of large isolate-specific DNA blocks with either high or low SNP densities. Some of the highly polymorphic blocks likely accumulated SNPs for over 10,000 years, well before the domestication of barley. These isolate-specific blocks of alternating monomorphic and polymorphic regions imply an exceptionally large standing genetic variation in the Bgh population and might be generated and maintained by rare outbreeding and frequent clonal reproduction. RNA-sequencing experiments with isolates A6 and K1 during four early stages of compatible and incompatible interactions on leaves of partially immunocompromised Arabidopsis mutants revealed a conserved Bgh transcriptional program during pathogenesis compared with the natural host barley despite ∼200 million years of reproductive isolation of these hosts. Transcripts encoding candidate-secreted effector proteins are massively induced in successive waves. A specific decrease in candidate-secreted effector protein transcript abundance in the incompatible interaction follows extensive transcriptional reprogramming of the host transcriptome and coincides with the onset of localized host cell death, suggesting a host-inducible defense mechanism that targets fungal effector secretion or production
The variation of the gravitational constant inferred from the Hubble diagram of Type Ia supernovae
We consider a cosmological model with a variable gravitational constant, G,
based on a scalar-tensor theory. Using the recent observational data for the
Hubble diagram of type Ia supernovae (SNeIa) we find a phenomenological
expression describing the variation of G. The corresponding variation of the
fine structure constant \alpha within multidimensional theories is also
computed and is shown not to support known constraints on \Delta \alpha /
\alpha.Comment: LaTeX, 12 pages, 3 figs. In the replaced version figures are added
and some errors are correcte
Palmoplantar keratoderma along with neuromuscular and metabolic phenotypes in Slurp1-deficient mice.
Mutations in SLURP1 cause mal de Meleda, a rare palmoplantar keratoderma (PPK). SLURP1 is a secreted protein that is expressed highly in keratinocytes but has also been identified elsewhere (e.g., spinal cord neurons). Here, we examined Slurp1-deficient mice (Slurp1(-/-)) created by replacing exon 2 with β-gal and neo cassettes. Slurp1(-/-) mice developed severe PPK characterized by increased keratinocyte proliferation, an accumulation of lipid droplets in the stratum corneum, and a water barrier defect. In addition, Slurp1(-/-) mice exhibited reduced adiposity, protection from obesity on a high-fat diet, low plasma lipid levels, and a neuromuscular abnormality (hind-limb clasping). Initially, it was unclear whether the metabolic and neuromuscular phenotypes were due to Slurp1 deficiency, because we found that the targeted Slurp1 mutation reduced the expression of several neighboring genes (e.g., Slurp2, Lypd2). We therefore created a new line of knockout mice (Slurp1X(-/-) mice) with a simple nonsense mutation in exon 2. The Slurp1X mutation did not reduce the expression of adjacent genes, but Slurp1X(-/-) mice exhibited all of the phenotypes observed in the original line of knockout mice. Thus, Slurp1 deficiency in mice elicits metabolic and neuromuscular abnormalities in addition to PPK
Detection of interstellar hydrogen peroxide
The molecular species hydrogen peroxide, HOOH, is likely to be a key
ingredient in the oxygen and water chemistry in the interstellar medium. Our
aim with this investigation is to determine how abundant HOOH is in the cloud
core {\rho} Oph A. By observing several transitions of HOOH in the
(sub)millimeter regime we seek to identify the molecule and also to determine
the excitation conditions through a multilevel excitation analysis. We have
detected three spectral lines toward the SM1 position of {\rho} Oph A at
velocity-corrected frequencies that coincide very closely with those measured
from laboratory spectroscopy of HOOH. A fourth line was detected at the
4{\sigma} level. We also found through mapping observations that the HOOH
emission extends (about 0.05 pc) over the densest part of the {\rho} Oph A
cloud core. We derive an abundance of HOOH relative to that of H_2 in the SM1
core of about 1\times10^(-10). To our knowledge, this is the first reported
detection of HOOH in the interstellar medium.Comment: 5 pages, 4 figures, accepted for publication in Astronomy &
Astrophysics, new version corrects a typo in Table 1 (and consequently in Fig
4
The metallic resistance of a dilute two-dimensional hole gas in a GaAs quantum well: two-phase separation at finite temperature?
We have studied the magnetotransport properties of a high mobility
two-dimensional hole gas (2DHG) system in a 10nm GaAs quantum well (QW) with
densities in range of 0.7-1.6*10^10 cm^-2 on the metallic side of the
zero-field 'metal-insulator transition' (MIT). In a parallel field well above
B_c that suppresses the metallic conductivity, the 2DHG exhibits a conductivity
g(T)~0.3(e^2/h)lnT reminiscent of weak localization. The experiments are
consistent with the coexistence of two phases in our system: a metallic phase
and a weakly insulating Fermi liquid phase having a percolation threshold close
to B_c
Magnetic Fields and the Crystallization of White Dwarfs
This is the final version. Available from Astronomical Society of the Pacific via the link in this recordEuroWD16: 20th European White Dwarf Workshop, 25-29 July 2016, Warwick, UKThe evolution of white dwarfs can be described as a cooling process.
When the temperature is low enough, the interior experiences a phase transition and
crystallizes. Crystallization introduces two new sources of energy, latent heat and chemical sedimentation, and induces the formation of a convective mantle around the solid
core. This structure, which is analogous to that of the Earth, could induce the formation
of a magnetic field via dynamo mechanism. In this work we discuss the viability of
such mechanism, and its use as a diagnostic tool of crystallization.MINECOEuropean UnionGeneralitat de Cataluny
- …