1,740 research outputs found

    Bounds on the mass and abundance of dark compact objects and black holes in dwarf spheroidal galaxy halos

    Get PDF
    We establish new dynamical constraints on the mass and abundance of compact objects in the halo of dwarf spheroidal galaxies. In order to preserve kinematically cold the second peak of the Ursa Minor dwarf spheroidal (UMi dSph) against gravitational scattering, we place upper limits on the density of compact objects as a function of their assumed mass. The mass of the dark matter constituents cannot be larger than 1000 solar masses at a halo density in UMi's core of 0.35 solar masses/pc^3. This constraint rules out a scenario in which dark halo cores are formed by two-body relaxation processes. Our bounds on the fraction of dark matter in compact objects with masses >3000 solar masses improve those based on dynamical arguments in the Galactic halo. In particular, objects with masses 105\sim 10^{5} solar masses can comprise no more than a halo mass fraction 0.01\sim 0.01. Better determinations of the velocity dispersion of old overdense regions in dSphs may result in more stringent constraints on the mass of halo objects. For illustration, if the preliminary value of 0.5 km/s for the secondary peak of UMi is confirmed, compact objects with masses above 100\sim 100 solar masses could be excluded from comprising all its dark matter halo.Comment: 6 pages, 2 figures, accepted for publication in ApJ Letter

    Switching Exponent Scaling near Bifurcation Points for Non-Gaussian Noise

    Get PDF
    We study noise-induced switching of a system close to bifurcation parameter values where the number of stable states changes. For non-Gaussian noise, the switching exponent, which gives the logarithm of the switching rate, displays a non-power-law dependence on the distance to the bifurcation point. This dependence is found for Poisson noise. Even weak additional Gaussian noise dominates switching sufficiently close to the bifurcation point, leading to a crossover in the behavior of the switching exponent

    Analytic solution of a magnetized tori with magnetic polarization around Kerr black holes

    Full text link
    We present the first family of magnetically polarized equilibrium tori around a Kerr black hole. The models were obtained in the test fluid approximation by assuming that the tori is a linear media, making it is possible to characterize the magnetic polarization of the fluid through the magnetic susceptibility χm\chi_{m}. The magnetohydrodynamic (MHD) structure of the models was solved by following the Komissarov approach, but with the aim of including the magnetic polarization of the fluid, the integrability condition for the magnetic counterpart was modified. We build two kinds of magnetized tori depending on whether the magnetic susceptibility is constant in space or not. In the models with constant χm\chi_{m}, we find that the paramagnetic tori (χm>0\chi_{m}>0) are more dense and less magnetized than the diamagnetic ones (χm<0\chi_{m}<0) in the region between the inner edge, rinr_{in}, and the center of the disk, rcr_{c}; however, we find the opposite behavior for r>rcr>r_{c}. Now, in the models with non-constant χm\chi_{m}, the tori become more magnetized than the Komissarov solution in the region where χm/r<0\partial\chi_{m}/\partial r<0, and less magnetized when χm/r>0\partial\chi_{m}/\partial r>0. Nevertheless, it is worth mentioning that in all solutions presented in this paper the magnetic pressure is greater than the hydrodynamic pressure. These new equilibrium tori can be useful for studying the accretion of a magnetic media onto a rotating black hole.Comment: 7 pages, 15 .pdf figures, 1 table, Accepted for publication in Astronomy & Astrophysics (A&A

    A Spatiotemporal Synthesis of High-Resolution Salinity Data with Aquaculture Applications

    Get PDF
    Technological advancement and the desire to better monitor shallow habitats in the Chesapeake Bay, Maryland, United States led to the initiation of several high-resolution monitoring programs such as ConMon (short for “Continuous Monitoring”) measuring oxygen, salinity, and chlorophyll-a at a 15-minute frequency. These monitoring efforts have yielded an enormous volume of data and insight into the condition of the tidal water of the Bay. But this information is underutilized in documenting the fine-scale variability of water quality, which is critical in identifying the link between water quality and ecological responses, partly due to the challenges in integrating monitoring data collected at different frequencies and locations. In a project to understand the environmental suitability of aquaculture sites and the future potential overlap between aquaculture and submerged aquatic vegetation, we developed a spatiotemporal synthesis of ConMon data with data from long-term, fixed-station seasonal monitoring. Here, we present our generalized additive model-based approach to predict salinity at high frequency (15 minutes) and fine spatial resolution (~100 meters) in the Maryland portion of the Bay, its major tributaries, and the shallow tidal creeks that exchange with the tributaries. Predictive performance was validated to be 1 PSU (practical salinity unit) in root mean square error using de novo monitoring. The resulting data provide insights into the environmental suitability of aquaculture, specifically the sensitivity of the Easter oyster (Crassostrea virginica) to low salinity stress. The spatiotemporal synthesis approach has potential applications for integrated monitoring and potential linkage with high-resolution water quality models for shallow habitats

    Formation and fate of the born-again planetary nebula HuBi 1

    Full text link
    We present the first 3D radiation-hydrodynamic simulations on the formation and evolution of born-again planetary nebulae (PNe), with particular emphasis to the case of HuBi1, the inside-out PN. We use the extensively-tested GUACHO code to simulate the formation of HuBi1 adopting mass-loss and stellar wind terminal velocity estimates obtained from observations presented by our group. We found that, if the inner shell of HuBi1 was formed by an explosive very late thermal pulse (VLTP) ejecting material with velocities of \sim300 km s1^{-1}, the age of this structure is consistent with that of \simeq200 yr derived from multi-epoch narrow-band imaging. Our simulations predict that, as a consequence of the dramatic reduction of the stellar wind velocity and photon ionizing flux during the VLTP, the velocity and pressure structure of the outer H-rich nebula are affected creating turbulent ionized structures surrounding the inner shell. These are indeed detected in Gran Telescopio Canarias MEGARA optical observations. Furthermore, we demonstrate that the current relatively low ionizing photon flux from the central star of HuBi1 is not able to completely ionize the inner shell, which favors previous suggestions that its excitation is dominated by shocks. Our simulations suggest that the kinetic energy of the H-poor ejecta of HuBi1 is at least 30 times that of the clumps and filaments in the evolved born-again PNe A30 and A78, making it a truly unique VLTP event.Comment: 9 pages, 10 figures, no tables; accepted to MNRA

    Affordable Rotating Fluid Demonstrations for Geoscience Education: The DIYnamics Project

    Get PDF
    Demonstrations using rotating tanks of fluid can help demystify otherwise counterintuitive behaviors of atmospheric, oceanic, and planetary interior fluid motions. But the expense and complicated assembly of existing rotating table platforms limit their appeal for many schools, especially those below the university level. Here, we introduce Do-It-Yourself Dynamics (DIYnamics), a project developing extremely low-cost rotating tank platforms and accompanying teaching materials. The devices can be assembled in a few minutes from household items, all available for purchase online. Ordering, assembly, and operation instructions are available on the DIYnamics website. Videos using these and other rotating tables to teach specific concepts such as baroclinic instability are available on the DIYnamics YouTube channel—including some in Spanish. The devices, lesson plans, and demonstrations have been successfully piloted at multiple middle schools, in a university course, and at public science outreach events. These uses to date convince us of the DIYnamics materials’ pedagogical value for instructors from well-versed university professors to K–12 science teachers with little background in fluid dynamics
    corecore