230 research outputs found

    Inflammation and prolonged QT time: Results from the Cardiovascular Disease, Living and Ageing in Halle (CARLA) study

    Get PDF
    Background: Previous research found an association of CRP with QT time in population based samples. Even more, there is evidence of a substantial involvement of the tumor necrosis factor-alpha system in the pathophysiology of cardiac arrhythmia, while the role of Interleukin 6 remains inconclusive. Objective: To determine the association between inflammation with an abnormally prolonged QT-time (APQT) in men and women of the elderly general population. Methods: Data descend from the baseline examination of the prospective, population-based Cardiovascular Disease, Living and Ageing in Halle (CARLA) Study. After exclusion of subjects with atrial fibrillation and missing ECG recording the final study cohort consisted of 919 men and 797 women. Blood parameters of inflammation were the soluble TNF-Receptor 1 (sTNF-R1), the high-sensitive C-reactive protein (hsCRP), and Interleukin 6 (IL-6). In accordance with major cardiologic societies we defined an APQT above a QT time of 460 ms in women and 450 ms in men. Effect sizes and the corresponding 95% confidence intervals (CI) were estimated by performing multiple linear and logistic regression analyses including the analysis of sex differences by interaction terms. Results: After covariate adjustment we found an odds ratio (OR) of 1.89 (95% CI: 1.13, 3.17) per 1000 pg/mL increase of sTNF-R1 in women, and 0.74 (95% CI: 0.48, 1.15) in men. In the covariate adjusted linear regression sTNF-R1 was again positively associated with QT time in women (5.75 ms per 1000 pg/mL, 95% CI: 1.32, 10.18), but not in men. Taking possible confounders into account IL-6 and hsCRP were not significantly related to APQT in both sexes. Conclusion: Our findings from cross-sectional analyses give evidence for an involvement of TNF-alpha in the pathology of APQT in women

    Tranilast increases vasodilator response to acetylcholine in rat mesenteric resistance arteries through increased EDHF participation

    Full text link
    Background and Purpose: Tranilast, in addition to its capacity to inhibit mast cell degranulation, has other biological effects, including inhibition of reactive oxygen species, cytokines, leukotrienes and prostaglandin release. In the current study, we analyzed whether tranilast could alter endothelial function in rat mesenteric resistance arteries (MRA). Experimental Approach: Acetylcholine-induced relaxation was analyzed in MRA (untreated and 1-hour tranilast treatment) from 6 month-old Wistar rats. To assess the possible participation of endothelial nitric oxide or prostanoids, acetylcholineinduced relaxation was analyzed in the presence of L-NAME or indomethacin. The participation of endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced response was analyzed by preincubation with TRAM-34 plus apamin or by precontraction with a high K+ solution. Nitric oxide (NO) and superoxide anion levels were measured, as well as vasomotor responses to NO donor DEA-NO and to large conductance calcium-activated potassium channel opener NS1619. Key Results: Acetylcholine-induced relaxation was greater in tranilast-incubated MRA. Acetylcholine-induced vasodilation was decreased by L-NAME in a similar manner in both experimental groups. Indomethacin did not modify vasodilation. Preincubation with a high K+ solution or TRAM-34 plus apamin reduced the vasodilation to ACh more markedly in tranilastincubated segments. NO and superoxide anion production, and vasodilator responses to DEA-NO or NS1619 remained unmodified in the presence of tranilast. Conclusions and Implications: Tranilast increased the endothelium-dependent relaxation to acetylcholine in rat MRA. This effect is independent of the nitric oxide and cyclooxygenase pathways but involves EDHF, and is mediated by an increased role of small conductance calcium-activated K+ channelsThis study was supported by Ministerio de Ciencia e Innovación (SAF 2009-10374), Ministerio de Economía y Competitividad (SAF 2012-38530), and Fundación Mapfre. F.E. Xavier is recipient of research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil

    Altered monocyte activation markers in Tourette's syndrome: a case-control study

    Get PDF
    Background: Infections and immunological processes are likely to be involved in the pathogenesis of Tourette's syndrome (TS). To determine possible common underlying immunological mechanisms, we focused on innate immunity and studied markers of inflammation, monocytes, and monocyte-derived cytokines. Methods: In a cross-sectional study, we used current methods to determine the number of monocytes and levels of C-reactive protein (CRP) in 46 children, adolescents, and adult patients suffering from TS and in 43 healthy controls matched for age and sex. Tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), soluble CD14 (sCD14), IL1-receptor antagonist (IL1-ra), and serum neopterin were detected by immunoassays. Results: We found that CRP and neopterin levels and the number of monocytes were significantly higher in TS patients than in healthy controls. Serum concentrations of TNF-alpha, sIL1-ra, and sCD14 were significantly lower in TS patients. All measured values were within normal ranges and often close to detection limits. Conclusions: The present results point to a monocyte dysregulation in TS. This possible dysbalance in innate immunity could predispose to infections or autoimmune reactions

    Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased intracranial pressure (ICP) is a serious, life-threatening, secondary event following traumatic brain injury (TBI). In many cases, ICP rises in a delayed fashion, reaching a maximal level 48-96 hours after the initial insult. While pressure catheters can be implanted to monitor ICP, there is no clinically proven method for determining a patient's risk for developing this pathology.</p> <p>Methods</p> <p>In the present study, we employed antibody array and Luminex-based screening methods to interrogate the levels of inflammatory cytokines in the serum of healthy volunteers and in severe TBI patients (GCS≤8) with or without incidence of elevated intracranial pressure (ICP). De-identified samples and ELISAs were used to confirm the sensitivity and specificity of IL-6 as a prognostic marker of elevated ICP in both isolated TBI patients, and polytrauma patients with TBI.</p> <p>Results</p> <p>Consistent with previous reports, we observed sustained increases in IL-6 levels in TBI patients irrespective of their ICP status. However, the group of patients who subsequently experienced ICP ≥ 25 mm Hg had significantly higher IL-6 levels within the first 17 hours of injury as compared to the patients whose ICP remained ≤20 mm Hg. When blinded samples (n = 22) were assessed, a serum IL-6 cut-off of <5 pg/ml correctly identified 100% of all the healthy volunteers, a cut-off of >128 pg/ml correctly identified 85% of isolated TBI patients who subsequently developed elevated ICP, and values between these cut-off values correctly identified 75% of all patients whose ICP remained ≤20 mm Hg throughout the study period. In contrast, the marker had no prognostic value in predicting elevated ICP in polytrauma patients with TBI. When the levels of serum IL-6 were assessed in patients with orthopedic injury (n = 7) in the absence of TBI, a significant increase was found in these patients compared to healthy volunteers, albeit lower than that observed in TBI patients.</p> <p>Conclusions</p> <p>Our results suggest that serum IL-6 can be used for the differential diagnosis of elevated ICP in isolated TBI.</p

    Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In principle, the elimination of malignancies by oncolytic virotherapy could proceed by different mechanisms - e.g. tumor cell specific oncolysis, destruction of the tumor vasculature or an anti-tumoral immunological response. In this study, we analyzed the contribution of these factors to elucidate the responsible mechanism for regression of human breast tumor xenografts upon colonization with an attenuated vaccinia virus (VACV).</p> <p>Methods</p> <p>Breast tumor xenografts were analyzed 6 weeks post VACV infection (p.i.; regression phase) by immunohistochemistry and mouse-specific expression arrays. Viral-mediated oncolysis was determined by tumor growth analysis combined with microscopic studies of intratumoral virus distribution. The tumor vasculature was morphologically characterized by diameter and density measurements and vessel functionality was analyzed by lectin perfusion and extravasation studies. Immunological aspects of viral-mediated tumor regression were studied in either immune-deficient mouse strains (T-, B-, NK-cell-deficient) or upon cyclophosphamide-induced immunosuppression (MHCII<sup>+</sup>-cell depletion) in nude mice.</p> <p>Results</p> <p>Late stage VACV-infected breast tumors showed extensive necrosis, which was highly specific to cancer cells. The tumor vasculature in infected tumor areas remained functional and the endothelial cells were not infected. However, viral colonization triggers hyperpermeability and dilatation of the tumor vessels, which resembled the activated endothelium in wounded tissue. Moreover, we demonstrated an increased expression of genes involved in leukocyte-endothelial cell interaction in VACV-infected tumors, which orchestrate perivascular inflammatory cell infiltration. The immunohistochemical analysis of infected tumors displayed intense infiltration of MHCII-positive cells and colocalization of tumor vessels with MHCII<sup>+</sup>/CD31<sup>+ </sup>vascular leukocytes. However, GI-101A tumor growth analysis upon VACV-infection in either immunosuppressed nude mice (MHCII<sup>+</sup>-cell depleted) or in immune-deficient mouse strains (T-, B-, NK-cell-deficient) revealed that neither MHCII-positive immune cells nor T-, B-, or NK cells contributed significantly to VACV-mediated tumor regression. In contrast, tumors of immunosuppressed mice showed enhanced viral spreading and tumor necrosis.</p> <p>Conclusions</p> <p>Taken together, these results indicate that VACV-mediated oncolysis is the primary mechanism of tumor shrinkage in the late regression phase. Neither the destruction of the tumor vasculature nor the massive VACV-mediated intratumoral inflammation was a prerequisite for tumor regression. We propose that approaches to enhance viral replication and spread within the tumor microenvironment should improve therapeutical outcome.</p
    corecore