2,650 research outputs found
Efficient harmonic oscillator chain energy harvester driven by colored noise
We study the performance of an electromechanical harmonic oscillator chain as
an energy harvester to extract power from finite-bandwidth ambient random
vibrations, which are modelled by colored noise. The proposed device is
numerically simulated and its performance assessed by means of the net
electrical power generated and its efficiency in converting the external
noise-supplied power into electrical power. Our main result is a much enhanced
performance, both in the net electrical power delivered and in efficiency, of
the harmonic chain with respect to the popular single oscillator resonator. Our
numerical findings are explained by means of an analytical approximation, in
excellent agreement with numerics
A Review of Crop Height Retrieval Using InSAR Strategies: Techniques and Challenges
This article compares the performance of four different interferometric synthetic aperture radar (SAR) techniques for the estimation of rice crop height by means of bistatic TanDEM-X data. Methods based on the interferometric phase alone, on the coherence amplitude alone, on the complex coherence value, and on polarimetric SAR interferometry (PolInSAR) are analyzed. Validation is conducted with reference data acquired over rice fields in Spain during the Science Phase of the TanDEM-X mission. Single- and dual-polarized data are exploited to also provide further insights into the polarization influence on these approaches. Vegetation height estimates from methodologies based on the interferometric phase show a general underestimation for the HH channel (with a bias that reaches around 25 cm in mid-July for some fields), whereas the VV channel is strongly influenced by noisy phases, especially at large incidences [root-mean-square error (RMSE) = 31 cm]. Results show that these approaches perform better at shallower incidences than the methodologies based on coherence amplitude and on PolInSAR, which obtain the most suitable results at steep incidences, with RMSE values of 17 and 23 cm. On the contrary, at shallower incidences, they are highly affected by very low input coherence levels. Hence, they tend to overestimate vegetation height.This work was supported by the Spanish Ministry of Science and Innovation, in part by the State Agency of Research, and in part by the European Funds for Regional Development under Project TEC2017-85244-C2-1-P. The work of Noelia Romero-Puig was supported in part by the Generalitat Valenciana and in part by the European Social Fund under Grant ACIF/2018/204
Evaluation of PolInSAR Observables for Crop-Type Mapping Using Bistatic TanDEM-X Data
The contribution of Polarimetric SAR Interferometry (PolInSAR) observables to crop-type classification is investigated in this letter. The focus is set on characteristic parameters of the Coherence Region (CoRe), i.e. the representation in the polar plot of the PolInSAR data. For this purpose, time series of dual-pol HH-VV single-pass TanDEM-X bistatic data acquired over an agricultural area in Spain are exploited. In the experiment, up to 13 different crop types are evaluated. Crop classification is performed by means of the well-known Random Forest algorithm. The retrieved accuracy metrics highlight the potential of the evaluated PolInSAR descriptors for this application. Some PolInSAR features have proven to be enough representative of the scene, such as the Trace Coherence, which yields a classification accuracy of 75% and 87% at pixel and field level, respectively, on its own. Using all the PolInSAR parameters jointly as input features, classification reaches around 90% and 94% accuracy at pixel and field level, respectively. However, there are some PolInSAR feature subsets, e.g. the coherence measured at the Pauli channels or the foci of the ellipse which represents the CoRe, which yield accuracy levels very close to these maxima. These results demonstrate the suitability of the PolInSAR parameters for crop-type classification. Results are further improved when both polarimetric and PolInSAR features are combined, reaching 94% and 96% accuracy at pixel and field level, respectively.This work was supported by the Spanish Ministry of Science and Innovation, the State Agency of Research (AEI) and the European Funds for Regional Development (EFRD) under Project PID2020-117303GB-C22. Mario Busquier received a grant from the University of Alicante [UAFPU20-08]
Estimation of RVoG Scene Parameters by Means of PolInSAR With TanDEM-X Data: Effect of the Double-Bounce Contribution
This article evaluates the effect of the double-bounce (DB) decorrelation term that appears in single-pass bistatic acquisitions, as in the TanDEM-X system, on the inversion of scene parameters by means of polarimetric SAR interferometry (PolInSAR). The retrieval of all scene parameters involved in the Random Volume over Ground (RVoG) model (i.e., ground topography, vegetation height, extinction, and ground-to-volume ratios) is affected by this term when the radar response from the ground is dominated by the DB. The estimation error in all these parameters is analyzed by means of simulations over a wide range of system configurations and scene variables for both agricultural crops and forest scenarios. Simulations demonstrate that the inclusion of the DB term, which complicates the inversion algorithm, is necessary for the angles of incidence shallower than 30° to achieve an estimation error below 10% in vegetation height and to avoid a significant underestimation in the ground-to-volume ratios. At steep incidences, this decorrelation term does not affect the estimation of vegetation height and ground-to-volume ratios. Regarding the extinction, this parameter is intrinsically not well estimated, since most retrieved values are close to the initial guesses employed for the optimization algorithm, regardless of the use or not of the DB decorrelation term. Finally, these findings are compared with the experimental results from the TanDEM-X data acquired over the rice fields in Spain for the available system parameters (baseline and incidence angle) of the acquired data set.This work was supported in part by the Spanish Ministry of Science, Innovation and Universities, the State Agency of Research (AEI), and in part by the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P. The work of Noelia Romero-Puig was supported in part by the Generalitat Valenciana and in part by the European Social Fund (ESF) under Grant ACIF/2018/204
A Tractable Product Channel Model for Line-of-Sight Scenarios
We present a general and tractable fading model for line-of-sight (LOS)
scenarios, which is based on the product of two independent and non-identically
distributed - shadowed random variables. Simple closed-form
expressions for the probability density function, cumulative distribution
function and moment-generating function are derived, which are as tractable as
the corresponding expressions derived from a product of Nakagami- random
variables. This model simplifies the challenging characterization of LOS
product channels, as well as combinations of LOS channels with non-LOS ones. We
leverage these results to analyze performance measures of interest in the
contexts of wireless powered and backscatter communications, where both forward
and reverse links are inherently of LOS nature, as well as in device-to-device
communications subject to composite fading. In these contexts, the model shows
a higher flexibility when fitting field measurements with respect to
conventional approaches based on product distributions with deterministic LOS,
together with a more complete physical interpretation of the underlying
propagation characteristics.Comment: This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no
longer be accessibl
Application of the Trace Coherence to HH-VV PolInSAR TanDEM-X Data for Vegetation Height Estimation
This article investigates, for the first time, the inclusion of the operator Trace Coherence (TrCoh) in polarimetric and interferometric synthetic aperture radar (SAR) methodologies for the estimation of biophysical parameters of vegetation. A modified inversion algorithm based on the well-known Random Volume over Ground (RVoG) model, which employs the TrCoh, is described and evaluated. In this regard, a different set of coherence extrema is used as input for the retrieval stage. In addition, the proposed methodology improves the inversion algorithm by employing analytical solutions rather than approximations. Validation is carried out exploiting single-pass HH-VV bistatic TanDEM-X data, together with reference data acquired over a paddy rice area in Spain. The added value of the TrCoh and the convenience of the use of analytical solutions are assessed by comparing with the conventional polarimetric SAR interferometry (PolInSAR) algorithm. Results demonstrate that the modified proposed methodology is computationally more effective than current methods on this dataset. For the same scene, the steps required for inversion are computed in 6 min with the conventional method, while it only takes 6 s with the proposed approach. Moreover, vegetation height estimates exhibit a higher accuracy with the proposed method in all fields under evaluation. The root-mean-squared error reached with the modified method improves by 7 cm with respect to the conventional algorithm
Molecular and Biochemical Methods Useful for the Epigenetic Characterization of Chromatin-Associated Proteins in Bivalve Molluscs
Bivalve molluscs constitute a ubiquitous taxonomic group playing key functions in virtually all ecosystems, and encompassing critical commercial relevance. Along with a sessile and filter-feeding lifestyle in most cases, these characteristics make bivalves model sentinel organisms routinely used for environmental monitoring studies in aquatic habitats. The study of epigenetic mechanisms linking environmental exposure and specific physiological responses (i.e., environmental epigenetics) stands out as a very innovative monitoring strategy, given the role of epigenetic modifications in acclimatization and adaptation. Furthermore, the heritable nature of many of those modifications constitutes a very promising avenue to explore the applicability of epigenetic conditioning and selection in management and restoration strategies. Chromatin provides a framework for the study of environmental epigenetic responses. Unfortunately, chromatin and epigenetic information are very limited in most non-traditional model organisms and even completely lacking in most environmentally and ecologically relevant organisms. The present work aims to provide a comprehensive and reproducible experimental workflow for the study of bivalve chromatin. First, a series of guidelines for the molecular isolation of genes encoding chromatin-associated proteins is provided, including information on primers suitable for conventional PCR, Rapid Amplification of cDNA Ends (RACE), genome walking and quantitative PCR (qPCR) experiments. This section is followed by the description of methods specifically developed for the analysis of histone and SNBP proteins in different bivalve tissues, including protein extraction, purification, separation and immunodetection. Lastly, information about available antibodies, their specificity and performance is also provided. The tools and protocols described here complement current epigenetic analyses (usually limited to DNA methylation) by incorporating the study of structural elements modulating chromatin dynamics
Double-Bounce Contribution Effect in the Estimation of Biophysical Parameters of Vegetation Based on PolInSAR TanDEM-X Bistatic Data
Proceedings of the 9th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry (POLinSAR'2019), Frascati, Italia.In this work we provide a detailed analysis of the effect of the double-bounce decorrelation factor on the inversion of scene parameters, with particular focus on the vegetation height. The study employs both simulated data as well as real data acquired over rice fields during the science phase of the TanDEM-X mission. The potential limitations of current inversion approaches are assessed, and the influence of both system parameters (i.e. incidence angle) and scene parameters (i.e. extinction coefficient and ground-to-volume ratios) is evaluated. Results show that the bias in the estimation of scene parameters is higher when the incidence angle is above 30 degrees, i.e for shallow incidences. The normalised vegetation height, i.e. expressed as kv , is used in order to extrapolate the results to other scenarios, e.g. forests.Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (AEI) y Fondos FEDR. Proyecto TEC2017-85244-C2-1-P. Generalitat Valenciana y Fondo Social Europeo (ESF), ref. ACIF/2018/204
- …