88 research outputs found

    Pro-inflammatory mediator responses from neonatal airway epithelial cells and early childhood wheeze

    Get PDF
    The authors would like to thank the study participants and their parents. The recruitment and sampling of this cohort was funded by the Chief Scientist Office, Edinburgh, UK (CAF/10/06). The follow up received no funding.Peer reviewedPostprin

    Quantitative Expression of C-Type Lectin Receptors in Humans and Mice

    Get PDF
    C-type lectin receptors, their adaptor molecules and S-type lectins (galectins) are involved in the recognition of glycosylated self-antigens and pathogens. However, little is known about the species- and organ-specific expression profiles of these molecules. We therefore determined the mRNA expression levels of Dectin-1, MR1, MR2, DC-SIGN, Syk, Card-9, Bcl-10, Malt-1, Src, Dec-205, Galectin-1, Tim-3, Trem-1, and DAP-12 in 11 solid organs of human and mice. Mouse organs revealed lower mRNA levels of most molecules compared to spleen. However, Dec-205 and Galectin-1 in thymus, Src in brain, MR2, Card-9, Bcl-10, Src, and Dec-205 in small intestine, MR2, Bcl-10, Src, Galectin-1 in kidney, and Src and Galectin-1 in muscle were at least 2-fold higher expressed compared to spleen. Human lung, liver and heart expressed higher mRNA levels of most genes compared to spleen. Dectin-1, MR1, Syk and Trem-1 mRNA were strongly up-regulated upon ischemia-reperfusion injury in murine kidney. Tim3, DAP-12, Card-9, DC-SIGN and MR2 were further up-regulated during renal fibrosis. Murine kidney showed higher DAP-12, Syk, Card-9 and Dectin-1 mRNA expression during the progression of lupus nephritis. Thus, the organ-, and species-specific expression of C-type lectin receptors and galectins is different between mice and humans which must be considered in the interpretation of related studies

    Hepatic Localization of Macrophage Phenotypes during Fibrogenesis and Resolution of Fibrosis in Mice and Humans

    Get PDF
    Macrophages have been found to both promote liver fibrosis and contribute to its resolution by acquiring different phenotypes based on signals from the micro-environment. The best-characterized phenotypes in the macrophage spectrum are labeled M1 (classically activated) and M2 (alternatively activated). Until now the in situ localization of these phenotypes in diseased livers is poorly described. In this study, we therefore aimed to localize and quantify M1- and M2-dominant macrophages in diseased mouse and human livers.The scarred collagen-rich areas in cirrhotic human livers and in CCl4-damaged mouse livers contained many macrophages. Though total numbers of macrophages were higher in fibrotic livers, the number of parenchymal CD68-positive macrophages was significantly lower as compared to normal. Scar-associated macrophages were further characterized as either M1-dominant (IRF5 and IL-12) or M2-dominant (CD206, TGM2 and YM-1) and significantly higher numbers of both of these were detected in diseased livers as compared to healthy human and mouse livers. Interestingly, in mouse livers undergoing resolution of fibrosis, the total number of CD68+ macrophages was significantly lower compared to their fibrotic counterparts. M2-dominant (YM-1) macrophages were almost completely gone in livers undergoing resolution, while numbers of M1-dominant (IRF5) macrophages were unchanged and the proteolytic activity (MMP9) increased. In conclusion, this study shows the distribution of macrophage subsets in livers of both human and murine origin. The presence of M1-and M2-dominant macrophages side by side in fibrotic lesions suggests that both are involved in fibrotic responses, while the persistence of M1-dominant macrophages during resolution may indicate their importance in regression of fibrosis. This study emphasizes that immunohistochemical detection of M1/M2-dominant macrophages provides valuable information in addition to widely used flow cytometry and gene analysis

    Pulmonary epithelial barrier and immunological functions at birth and in early life - key determinants of the development of asthma?  A description of the protocol for the Breathing Together study

    Get PDF
    Acknowledgements The authors are indebted to the participants and parents who have already been recruited. We also acknowledge the enthusiasm and endeavour of the research nurse team which includes: Stephen Main, Margaret Connon, Catherine Beveridge, Julie Baggott, Kay Riding, Ellie McCamie, Maria Larsson, Lynda Melvin, Mumtaz Idris, Tara Murray, Nicky Tongue, Nicolene Plaatjies, Sheila Mortimer, Sally Spedding, Susy Grevatt, Victoria Welch, Morag Zelisko, Jillian Doherty, Jane Martin, Emma Macleod and Cilla Snape. We are also delighted to be working alongside the following colleagues in laboratories: Marie Craigon, Marie McWilliam, Maria Zarconi, Judit Barabas, Lindsay Broadbent, Ceyda Oksel and Sheerien Manzoor. Grant information The study is supported by the Wellcome Trust [108818]; and the PHA HSC R&D Division, Northern Ireland.Peer reviewedPublisher PD

    Impaired innate interferon induction in severe therapy resistant atopic asthmatic children

    Get PDF
    Deficient type I interferon-β and type III interferon-λ induction by rhinoviruses has previously been reported in mild/moderate atopic asthmatic adults. No studies have yet investigated if this occurs in severe therapy resistant asthma (STRA). Here, we show that compared with non-allergic healthy control children, bronchial epithelial cells cultured ex vivo from severe therapy resistant atopic asthmatic children have profoundly impaired interferon-β and interferon-λ mRNA and protein in response to rhinovirus (RV) and polyIC stimulation. Severe treatment resistant asthmatics also exhibited increased virus load, which negatively correlated with interferon mRNA levels. Furthermore, uninfected cells from severe therapy resistant asthmatic children showed lower levels of Toll-like receptor-3 mRNA and reduced retinoic acid inducible gene and melanoma differentiation-associated gene 5 mRNA after RV stimulation. These data expand on the original work, suggesting that the innate anti-viral response to RVs is impaired in asthmatic tissues and demonstrate that this is a feature of STRA

    ENFERMEDAD DEL ROSAL EN EL ESTADO DE MEXICO 

    No full text

    Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis

    No full text
    Renal tubular cell apoptosis is a critical detrimental event that leads to chronic kidney injury in association with renal fibrosis. The present study was designed to investigate the role of galectin-3 (Gal-3), an important regulator of multiple apoptotic pathways, in chronic kidney disease induced by unilateral ureteral obstruction (UUO). After UUO, Gal-3 expression significantly increased compared with basal levels reaching a peak increase of 95-fold by day 7. Upregulated Gal-3 is predominantly tubular at early time points after UUO but shifts to interstitial cells as the injury progresses. On day 14, there was a significant increase in TdT-mediated dUTP nick end labeling-positive cells (129%) and cytochrome c release (29%), and a decrease in BrdU-positive cells (62%) in Gal-3-deficient compared with wild-type mice. The degree of renal damage was more extensive in Gal-3-deficient mice at days 14 and 21, 35 and 21% increase in total collagen, respectively. Despite more severe fibrosis, myofibroblasts were significantly decreased by 58% on day 14 in the Gal-3-deficient compared with wild-type mice. There was also a corresponding 80% decrease in extracellular matrix synthesis in Gal-3-deficient compared with wild-type mice. Endo180 is a recently recognized receptor for intracellular collagen degradation that is expressed by interstitial cells during renal fibrogenesis. Endo180 expression was significantly decreased by greater than 50% in Gal-3-deficient compared with wild-type mice. Taken together, these results suggested that Gal-3 not only protects renal tubules from chronic injury by limiting apoptosis but that it may lead to enhanced matrix remodeling and fibrosis attenuation
    corecore