14 research outputs found

    Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype

    Get PDF
    Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease

    Short communication. Molecular analysis of the genomic RNAs 1 and 2 of the first Arabis mosaic virus isolate detected in Spanish grapevines

    No full text
    The Arabis mosaic virus (ArMV) is one of the causative agent of the grapevine fanleaf disease, one of the most widespread and damaging viral diseases of grapevine. Recently, the ArMV has been detected in Spanish vineyards, and its determination and molecular characterization was undertaken. To this aim, the nucleotide sequence of the genomic RNAs 1 and 2 of the first isolate of ArMV infecting grapevine detected in Spain (ArMV-DU13) has been determined. The ArMV-DU13 genomic sequences were compared to the corresponding sequences of other isolates of ArMV, or nepoviruses. The most divergent genes among ArMV isolates were the X1 and VPg genes on the RNA 1, and the 2A gene on the RNA 2, with identity levels at the amino acid level of 78% (X1 and VPg) or 69% (2A) between the most distant isolates. Interestingly, the VPg genes were identical between the two grapevine isolates ArMV-Du13 and –NW, suggesting a possible implication of the host. The phylogenetic analysis of the RNA 2 showed that the Spanish isolate was close to Grapevine fanleaf virus isolates. The analysis of the full length RNA 2 suggests a recombination event between ArMV-DU13 and GFLV-GHu isolates between nucleotides 54 and 586 in the ArMV-DU13 isolate. Altogether, these results confirm the high variability between isolates of ArMV, and will be helpful to design more appropriate and reliable molecular diagnostic techniques for the control of this emerging virus in Spain

    Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis

    No full text
    CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases

    Glucose metabolism links astroglial mitochondria to cannabinoid effects

    No full text
    Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses <sup>1-5</sup> . By contrast, astrocytes are under neuronal control through specific neurotransmitter receptors <sup>5-7</sup> . However, whether the activation of astroglial receptors can directly regulate cellular glucose metabolism to eventually modulate behavioural responses is unclear. Here we show that activation of mouse astroglial type-1 cannabinoid receptors associated with mitochondrial membranes (mtCB <sub>1</sub> ) hampers the metabolism of glucose and the production of lactate in the brain, resulting in altered neuronal functions and, in turn, impaired behavioural responses in social interaction assays. Specifically, activation of astroglial mtCB <sub>1</sub> receptors reduces the phosphorylation of the mitochondrial complex I subunit NDUFS4, which decreases the stability and activity of complex I. This leads to a reduction in the generation of reactive oxygen species by astrocytes and affects the glycolytic production of lactate through the hypoxia-inducible factor 1 pathway, eventually resulting in neuronal redox stress and impairment of behavioural responses in social interaction assays. Genetic and pharmacological correction of each of these effects abolishes the effect of cannabinoid treatment on the observed behaviour. These findings suggest that mtCB <sub>1</sub> receptor signalling can directly regulate astroglial glucose metabolism to fine-tune neuronal activity and behaviour in mice
    corecore