5 research outputs found

    Conservation and variability of hepatitis B core at different chronic hepatitis stages

    Get PDF
    Since it is currently not possible to eradicate hepatitis B virus (HBV) infection with existing treatments, research continues to uncover new therapeutic strategies. HBV core protein, encoded by the HBV core gene (HBC), intervenes in both structural and functional processes, and is a key protein in the HBV life cycle. For this reason, both the protein and the gene could be valuable targets for new therapeutic and diagnostic strategies. Moreover, alterations in the protein sequence could serve as potential markers of disease progression. To detect, by next-generation sequencing, HBC hyper-conserved regions that could potentially be prognostic factors and targets for new therapies. Thirty-eight of 45 patients with chronic HBV initially selected were included and grouped according to liver disease stage [chronic hepatitis B infection without liver damage (CHB, n = 16), liver cirrhosis (LC, n = 5), and hepatocellular carcinoma (HCC, n = 17)]. HBV DNA was extracted from patients' plasma. A region between nucleotide (nt) 1863 and 2483, which includes HBC, was amplified and analyzed by next-generation sequencing (Illumina MiSeq platform). Sequences were genotyped by distance-based discriminant analysis. General and intergroup nt and amino acid (aa) conservation was determined by sliding window analysis. The presence of nt insertion and deletions and/or aa substitutions in the different groups was determined by aligning the sequences with genotype-specific consensus sequences. Three nt (nt 1900-1929, 2249-2284, 2364-2398) and 2 aa (aa 117-120, 159-167) hyper-conserved regions were shared by all the clinical groups. All groups showed a similar pattern of conservation, except for five nt regions (nt 1946-1992, 2060-2095, 2145-2175, 2230-2250, 2270-2293) and one aa region (aa 140-160), where CHB and LC, respectively, were less conserved (P < 0.05). Some group-specific conserved regions were also observed at both nt (2306-2334 in CHB and 1935-1976 and 2402-2435 in LC) and aa (between aa 98-103 in CHB and 28-30 and 51-54 in LC) levels. No differences in insertion and deletions frequencies were observed. An aa substitution (P79Q) was observed in the HCC group with a median (interquartile range) frequency of 15.82 (0-78.88) vs 0 (0-0) in the other groups (P < 0.05 vs CHB group). The differentially conserved HBC and HBV core protein regions and the P79Q substitution could be involved in disease progression. The hyper-conserved regions detected could be targets for future therapeutic and diagnostic strategies

    Individuals With SARS-CoV-2 Infection During the First and Second Waves in Catalonia, Spain: Retrospective Observational Study Using Daily Updated Data

    Get PDF
    Coronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Epidemiologia; ComparacióCoronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Epidemiología; ComparaciónCoronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Epidemiology; ComparisonA description of individuals with SARS-CoV-2 infection comparing the first and second waves could help adapt health services to manage this highly transmissible infection.Objective: We aimed to describe the epidemiology of individuals with suspected SARS-CoV-2 infection, and the characteristics of patients with a positive test comparing the first and second waves in Catalonia, Spain. Methods: This study had 2 stages. First, we analyzed daily updated data on SARS-CoV-2 infection in individuals from Girona (Catalonia). Second, we compared 2 retrospective cohorts of patients with a positive reverse-transcription polymerase chain reaction or rapid antigen test for SARS-CoV-2. The severity of patients with a positive test was defined by their admission to hospital, admission to intermediate respiratory care, admission to the intensive care unit, or death. The first wave was from March 1, 2020, to June 24, 2020, and the second wave was from June 25, 2020, to December 8, 2020.Results: The numbers of tests and cases were lower in the first wave than in the second wave (26,096 tests and 3140 cases in the first wave versus 140,332 tests and 11,800 cases in the second wave), but the percentage of positive results was higher in the first wave than in the second wave (12.0% versus 8.4%). Among individuals with a positive diagnostic test, 818 needed hospitalization in the first wave and 680 in the second; however, the percentage of hospitalized individuals was higher in the first wave than in the second wave (26.1% versus 5.8%). The group that was not admitted to hospital included older people and those with a higher percentage of comorbidities in the first wave, whereas the characteristics of the groups admitted to hospital were more alike.This work was supported by grants from the European Union ERDF funds (Network for Prevention and Health Promotion in Primary Care, RedIAPP–CARDIOCAT; RD16/0007/0004) and from the Agency for Management of University and Research Grants (AGAUR; 2017-SGR 1146). We thank Eric Tornabell for his technical support. We also thank all health care professionals for their ceaseless work to care for COVID-19 patients in this pandemic

    Optimization systems developed to improve the yield on tungsten and tantalum extraction and reduce associated costs – The EU HORIZON 2020 optimore project (grant no. 642201)

    No full text
    The main objective of OPTIMORE is to optimize the crushing, milling and separation processing technologies for tungsten and tantalum. Optimization is realized by means of improved fast and flexible fine tuning production process control based on new software models, advanced sensing and deeper understanding of processes to increase yield and increase energy savings. The results explained in this work show this fulfilment with developed or simplified models for crushing, milling, gravity, magnetic and froth flotation separations. A new control system has been developed in this last part of the project, using the developed process models and advanced sensor systems. Validation of models in the simulation environment has been carried out. A pilot plant and real plant validation is planned for the end of the project. Knowledge transfer throughout the project between the Tungsten and Tantalum industry and the project partners has resulted in a strong relation between both which will continue to grow as the project concludes
    corecore