26 research outputs found

    Reduced breeding success in great black-backed gulls (Larus marinus) due to harness-mounted GPS device

    Get PDF
    Animal-borne bio-logging devices are routinely fitted to seabirds to learn about their behaviour and physiology, as well as their interactions with the marine environment. The assessment and reporting of deleterious impacts from such devices on the individuals carrying them is critical to inform future work and improve data quality and animal welfare. We assessed the impacts of thoracic-harness attachments on the breeding performance and inter-annual return rates of Great Black-backed Gulls. We found that tagged individuals hatched fewer eggs per nest (0.67) than two different control groups (handled but not tagged – 2.0, and not handled – 1.9) and had lower hatching success rates per nest (27% compared with 81% and 82% in control groups). Inter-annual return rates were similar between tagged and control groups, but the harness attachment potentially caused the death of an individual 5 days after deployment. Overall, the harness attachment was a lead driver of nest failure. We urge extreme caution for those wanting to use harness-mounted devices on Great Black-backed Gulls

    Global population and conservation status of the Great Black-backed Gull Larus marinus

    Get PDF
    The Great Black-backed Gull Larus marinus is a generalist species that inhabits temperate and arctic coasts of the north Atlantic Ocean. In recent years, there has been growing concern about population declines at local and regional scales; however, there has been no attempt to robustly assess Great Black-backed Gull population trends across its global range. We obtained the most recent population counts across the species’ range and analysed population trends at a global, continental, and national scale over the most recent three-generation period (1985–2021) following IUCN Red List criteria. We found that, globally, the species has declined by 43%–48% over this period (1.2–1.3% per annum, respectively), from an estimated 291,000 breeding pairs to 152,000–165,000 breeding pairs under two different scenarios. North American populations declined more steeply than European ones (68% and 28%, respectively). We recommend that Great Black-backed Gull should be uplisted from ‘Least Concern’ to ‘Vulnerable’ on the IUCN Red List of Threatened Species under criterion A2 (an estimated reduction in population size >30% over three generations). Larus gulls; gull populations; population assessment; population ecology; bird conservationpublishedVersio

    Quantifying the impacts of predation by great black-backed gulls Larus marinus on an Atlantic puffin Fratercula arctica population: implications for conservation management and impact assessments

    Get PDF
    The management of predator-prey conflicts can be a key aspect of species conservation. For management approaches to be effective, a robust understanding of the predator-prey relationship is needed, particularly when both predator and prey are species of conservation concern. On the Isle of May, Firth of Forth, Scotland, numbers of breeding Great Black-backed Gulls Larus marinus, a generalist predator, have been increasing since the 1980s, which has led to increasing numbers of sympatrically breeding Atlantic Puffins Fratercula arctica being predated during the breeding season. This may have consequences for species management on the Isle of May and impact assessments of offshore windfarms in the wider Firth of Forth area. We used population viability analysis to quantify under what predation pressure the Atlantic Puffin population may decline and become locally extinct over a three-generation period. The predation level empirically estimated in 2017 (1120 Puffins per year) was not sufficient to drive a decline in the Puffin population. Rather, an increase to approximately 3000 Puffins per year would be required to cause a population decline, and >4000 to drive the population to quasi-extinction within 66 years. We discuss the likelihood of such a scenario being reached on the Isle of May, and we recommend that where predator-prey conflicts occur, predation-driven mortality should be regularly quantified to inform conservation management and population viability analyses associated with impact assessments

    Seabirds show foraging site and route fidelity but demonstrate flexibility in response to local information

    Get PDF
    •Background: Fidelity to a given foraging location or route may be beneficial when environmental conditions are predictable but costly if conditions deteriorate or become unpredictable. Understanding the magnitude of fidelity displayed by different species and the processes that drive or erode it is therefore vital for understanding how fidelity may shape the demographic consequences of anthropogenic change. In particular, understanding the information that individuals may use to adjust their fidelity will facilitate improved predictions of how fidelity may change as environments change and the extent to which it will buffer individuals against such changes. •Methods: We used movement data collected during the breeding season across eight years for common guillemots, Atlantic puffins, razorbills, and black-legged kittiwakes breeding on the Isle of May, Scotland to understand: (1) whether foraging site/route fidelity occurred within and between years, (2) whether the degree of fidelity between trips was predicted by personal foraging effort, and (3) whether different individuals made more similar trips when they overlapped in time at the colony prior to departure and/or when out at sea suggesting the use of the same local environmental cues or information on the decisions made by con- and heterospecifics. •Results: All species exhibited site and route fidelity both within- and between-years, and fidelity between trips in guillemots and razorbills was related to metrics of foraging effort, suggesting they adjust fidelity to their personal foraging experience. We also found evidence that individuals used local environmental cues of prey location or availability and/or information gained by observing conspecifics when choosing foraging routes, particularly in puffins, where trips of individuals that overlapped temporally at the colony or out at sea were more similar. •Conclusions: The fidelity shown by these seabird species has the potential to put them at greater risk in the face of environmental change by driving individuals to continue using areas being degraded by anthropogenic pressures. However, our results suggest that individuals show some flexibility in their fidelity, which may promote resilience under environmental change. The benefits of this flexibility are likely to depend on numerous factors, including the rapidity and spatial scale of environmental change and the reliability of the information individuals use to choose foraging sites or routes, thus highlighting the need to better understand how organisms combine cues, prior experience, and other sources of information to make movement decisions

    Virology under the microscope—a call for rational discourse

    Get PDF
    Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns – conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we – a broad group of working virologists – seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology

    Global population and conservation status of the Great Black-backed Gull Larus marinus

    No full text
    The Great Black-backed Gull Larus marinus is a generalist species that inhabits temperate and arctic coasts of the north Atlantic Ocean. In recent years, there has been growing concern about population declines at local and regional scales; however, there has been no attempt to robustly assess Great Black-backed Gull population trends across its global range. We obtained the most recent population counts across the species’ range and analysed population trends at a global, continental, and national scale over the most recent three-generation period (1985–2021) following IUCN Red List criteria. We found that, globally, the species has declined by 43%–48% over this period (1.2–1.3% per annum, respectively), from an estimated 291,000 breeding pairs to 152,000–165,000 breeding pairs under two different scenarios. North American populations declined more steeply than European ones (68% and 28%, respectively). We recommend that Great Black-backed Gull should be uplisted from ‘Least Concern’ to ‘Vulnerable’ on the IUCN Red List of Threatened Species under criterion A2 (an estimated reduction in population size >30% over three generations). Larus gulls; gull populations; population assessment; population ecology; bird conservatio
    corecore