7 research outputs found

    Non-invasive imaging reveals convergence in root and stem vulnerability to cavitation across five tree species

    Get PDF
    Root vulnerability to cavitation is challenging to measure and under-represented in current datasets. This gap limits the precision of models used to predict plant responses to drought because roots comprise the critical interface between plant and soil. In this study we measured vulnerability to drought induced cavitation in woody roots and stems of five tree species (Acacia aneura, Cedrus deodara, Eucalyptus crebra, Eucalytus saligna, and Quercus palustris) with a wide range of xylem anatomies. X-ray microtomography was used to visualize the accumulation of xylem embolism in stems and roots of intact plants that were naturally dehydrated to varying levels of water stress. Vulnerability to cavitation, defined as the water potential causing a 50% loss of hydraulic function (P50), varied broadly among the species (-4.51 to -11.93 MPa in stems and -3.13 to -9.64 MPa in roots). The P50 of roots and stems was significantly related across species, with species that had more vulnerable stems also having more vulnerable roots. While there was strong convergence in root and stem vulnerability to cavitation, the P50 of roots was significantly higher than the P50 of stems in three species. However, the difference in root and stem vulnerability for these species was small; between 1% to 31% of stem P50. Thus, while some differences existed between organs, roots were not dramatically more vulnerable to embolism than stems and the differences observed were less than those reported in previous studies. Further study is required to evaluate the vulnerability across root orders and to extend these conclusions to a greater number of species and xylem functional types

    Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient

    Get PDF
    Water availability has been considered one of the crucial drivers of species distribution. However, the increasing of temperatures and more frequent water shortages could overcome the ability of long-lived species to cope with rapidly changing conditions. Growth and survival of natural populations adapted to a given site, transferred and tested in other environments as part of provenance trials, can be interpreted as a simulation of ambient changes at the original location. We compare the intraspecific variation and the relative contribution of plasticity to adaptation of key functional traits related to drought resistance: vulnerability to cavitation, efficiency of the xylem to conduct water and biomass allocation. We use six populations of Canary Island pine growing in three provenance trials (wet, dry, and xeric). We found that the variability for hydraulic traits was largely due to phenotypic plasticity, whereas, genetic variation was limited and almost restricted to hydraulic safety traits and survival. Trees responded to an increase in climate dryness by lowering growth, and increasing leaf-specific hydraulic conductivity by means of increasing the Huber value. Vulnerability to cavitation only showed a plastic response in the driest provenance trial located in the ecological limit of the species. This trait was more tightly correlated with annual precipitation, drought length, and temperature oscillation at the origin of the populations than hydraulic efficiency or the Huber value. Vulnerability to cavitation was directly related to survival in the dry and the xeric provenance trials, illustrating its importance in determining drought resistance. In a new climatic scenario where more frequent and intense droughts are predicted, the magnitude of extreme events together with the fact that plasticity of cavitation resistance is only shown in the very dry limit of the species could hamper the capacity to adapt and buffer against environmental changes of some populations growing in dry locations

    Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress

    No full text
    The aim of this study was to provide new insights into how intraspecific variability in the response of key functional traits to drought dictates the interplay between gas-exchange parameters and the hydraulic architecture of European beech (Fagus sylvatica L.). Considering the relationships between hydraulic and leaf functional traits, we tested whether local adaptation to water stress occurs in this species. To address these objectives, we conducted a glasshouse experiment in which 2-year-old saplings from six beech populations were subjected to different watering treatments. These populations encompassed central and marginal areas of the range, with variation in macro- and microclimatic water availability. The results highlight subtle but significant differences among populations in their functional response to drought. Interpopulation differences in hydraulic traits suggest that vulnerability to cavitation is higher in populations with higher sensitivity to drought. However, there was no clear relationship between variables related to hydraulic efficiency, such as xylem-specific hydraulic conductivity or stomatal conductance, and those that reflect resistance to xylem cavitation (i.e., Ψ12, the water potential corresponding to a 12% loss of stem hydraulic conductivity). The results suggest that while a trade-off between photosynthetic capacity at the leaf level and hydraulic function of xylem could be established across populations, it functions independently of the compromise between safety and efficiency of the hydraulic system with regard to water use at the interpopulation level

    Visualization of xylem embolism by X-ray microtomography : a direct test against hydraulic measurements

    No full text
    X-ray microtomography (microCT) is becoming a valuable noninvasive tool for advancing our understanding of plant–water relations. Laboratory-based microCT systems are becoming more affordable and provide better access than synchrotron facilities. However, some systems come at the cost of comparably lower signal quality and spatial resolution than synchrotron facilities. In this study, we evaluated laboratory-based X-ray microCT imaging as a tool to nondestructively analyse hydraulic vulnerability to drought-induced embolism in a woody plant species. We analysed the vulnerability to drought-induced embolism of benchtop-dehydrated Eucalyptus camaldulensis plants using microCT and hydraulic flow measurements on the same sample material, allowing us to directly compare the two methods. Additionally, we developed a quantitative procedure to improve microCT image analysis at limited resolution and accurately measure vessel lumens. Hydraulic measurements matched closely with microCT imaging of the current-year growth ring, with similar hydraulic conductivity and loss of conductivity due to xylem embolism. Optimized thresholding of vessel lumens during image analysis, based on a physiologically meaningful parameter (theoretical conductivity), allowed us to overcome common potential constraints of some lab-based systems. Our results indicate that estimates of vulnerability to embolism provided by microCT visualization agree well with those obtained from hydraulic measurements on the same sample material

    Visualization of xylem embolism by X‐ray microtomography: a direct test against hydraulic measurements

    No full text
    X-ray microtomography (microCT) is becoming a valuable noninvasive tool for advancing our understanding of plant–water relations. Laboratory-based microCT systems are becoming more affordable and provide better access than synchrotron facilities. However, some systems come at the cost of comparably lower signal quality and spatial resolution than synchrotron facilities. In this study, we evaluated laboratory-based X-ray microCT imaging as a tool to nondestructively analyse hydraulic vulnerability to drought-induced embolism in a woody plant species. We analysed the vulnerability to drought-induced embolism of benchtop-dehydrated Eucalyptus camaldulensis plants using microCT and hydraulic flow measurements on the same sample material, allowing us to directly compare the two methods. Additionally, we developed a quantitative procedure to improve microCT image analysis at limited resolution and accurately measure vessel lumens. Hydraulic measurements matched closely with microCT imaging of the current-year growth ring, with similar hydraulic conductivity and loss of conductivity due to xylem embolism. Optimized thresholding of vessel lumens during image analysis, based on a physiologically meaningful parameter (theoretical conductivity), allowed us to overcome common potential constraints of some lab-based systems. Our results indicate that estimates of vulnerability to embolism provided by microCT visualization agree well with those obtained from hydraulic measurements on the same sample material

    Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance

    No full text
    Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3̊C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43̊C, while monitoring whole-canopy exchange of CO2 and H2O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3̊C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales

    A synthesis of radial growth patterns preceding tree mortality

    Get PDF
    Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1–100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks
    corecore