12,254 research outputs found

    Engage D2.6 Annual combined thematic workshops progress report (series 2)

    Get PDF
    The preparation, organisation and conclusions from the thematic challenge workshops, two ad hoc technical workshops, a technical session on data and a MET/ENV workshop held in 2019 and 2020 are described. Partly due to Covid-19, two of the 2020 thematic challenge workshops scheduled to take place at the end of 2020 were re-scheduled to January 2021. We also report on the preparation for these two workshops, while the conclusions will be included in the next corresponding deliverable

    Yield stress in magnetorheological suspensions near the limit of maximum-packing fraction

    Get PDF
    International audienceThis work deals with the magnetic field-induced static yield stress of magnetorheological (MR) suspensions with concentration near the limit of maximum-packing fraction. With this aim, homogeneous suspensions of iron microparticles with 50 vol.% concentration were prepared, and their yield stress measured as a function of the applied magnetic field. In view of the failure of existing models to predict, on the basis of realistic hypotheses, the values of the yield stress of highly concentrated MR suspensions, we developed a new model. Our model considers that field application induces body-centered tetragonal (BCT) structures. Upon shearing, these structures deform in such a way that interparticle gaps appear between neighboring particles of the same chain, whereas the approach of particles of parallel chains ensures the mechanical stability of the whole multi-chain structure. Based on this hypothesis, and using finite element method simulations of interparticle magnetic interactions, our model is able to quantitatively predict the yield stress of highly concentrated MR suspensions. Furthermore, estimations show that the main contribution to the field-dependent part of the yield stress comes from the change in the permeability of the structures as interparticle gaps are enlarged by the shear

    The elementary excitations of the exactly solvable Russian doll BCS model of superconductivity

    Full text link
    The recently proposed Russian doll BCS model provides a simple example of a many body system whose renormalization group analysis reveals the existence of limit cycles in the running coupling constants of the model. The model was first studied using RG, mean field and numerical methods showing the Russian doll scaling of the spectrum, E(n) ~ E0 exp(-l n}, where l is the RG period. In this paper we use the recently discovered exact solution of this model to study the low energy spectrum. We find that, in addition to the standard quasiparticles, the electrons can bind into Cooper pairs that are different from those forming the condensate and with higher energy. These excited Cooper pairs can be described by a quantum number Q which appears in the Bethe ansatz equation and has a RG interpretation.Comment: 36 pages, 12 figure

    Dust emission at 8-mic and 24-mic as Diagnostics of HII Region Radiative Transfer

    Get PDF
    We use the Spitzer SAGE survey of the Magellanic Clouds to evaluate the relationship between the 8-mic PAH emission, 24-mic hot dust emission, and HII region radiative transfer. We confirm that in the higher-metallicity Large Magellanic Cloud, PAH destruction is sensitive to optically thin conditions in the nebular Lyman continuum: objects identified as optically thin candidates based on nebular ionization structure show 6 times lower median 8-mic surface brightness (0.18 mJy arcsec^-2) than their optically thick counterparts (1.2 mJy arcsec^-2). The 24-mic surface brightness also shows a factor of 3 offset between the two classes of objects (0.13 vs 0.44 mJy arcsec^-2, respectively), which is driven by the association between the very small dust grains and higher density gas found at higher nebular optical depths. In contrast, PAH and dust formation in the low-metallicity Small Magellanic Cloud is strongly inhibited such that we find no variation in either 8-mic or 24-mic emission between our optically thick and thin samples. This is attributable to extremely low PAH and dust production together with high, corrosive UV photon fluxes in this low-metallicity environment. The dust mass surface densities and gas-to-dust ratios determined from dust maps using Herschel HERITAGE survey data support this interpretation.Comment: Accepted to ApJ, May 15, 2017. 10 pages, 9 figure

    The SU(3) spin chain sigma model and string theory

    Get PDF
    The ferromagnetic integrable SU(3) spin chain provides the one loop anomalous dimension of single trace operators involving the three complex scalars of N=4 supersymmetric Yang-Mills. We construct the non-linear sigma model describing the continuum limit of the SU(3) spin chain. We find that this sigma model corresponds to a string moving with large angular momentum in the five-sphere in AdS_5xS^5. The energy and spectrum of fluctuations for rotating circular strings with angular momenta along three orthogonal directions of the five-sphere is reproduced as a particular case from the spin chain sigma model.Comment: 14 pages. Latex.v2: Misprints corrected. v3: Minor changes and improved details from journal versio

    Yangian Symmetry at Two Loops for the su(2|1) Sector of N=4 SYM

    Get PDF
    We present the perturbative Yangian symmetry at next-to-leading order in the su(2|1) sector of planar N=4 SYM. Just like the ordinary symmetry generators, the bi-local Yangian charges receive corrections acting on several neighboring sites. We confirm that the bi-local Yangian charges satisfy the necessary conditions: they transform in the adjoint of su(2|1), they commute with the dilatation generator, and they satisfy the Serre relations. This proves that the sector is integrable at two loops.Comment: 13 pages, v2: minor correction

    Colombian essential oil of ruta graveolens against nosocomial antifungal resistant candida strains

    Get PDF
    Drug resistance in antifungal therapy, a problem unknown until a few years ago, is increasingly assuming importance especially in immunosuppressed patients and patients receiving chemotherapy and radiotherapy. In the past years, the use of essential oils as an approach to improve the effectiveness of antifungal agents and to reduce antifungal resistance levels has been proposed. Our research aimed to evaluate the antifungal activity of Colombian rue, Ruta graveolens, essential oil (REO) against clinical strains of Candida albicans, Candida parapsilopsis, Candida glabrata, and Candida tropicalis. Data obtained showed that C. tropicalis and C. albicans were the most sensitive strains showing minimum inhibitory concentrations (MIC) of 4.1 and 8.2 µg/mL of REO. Time–kill kinetics assay demonstrated that REO showed a fungicidal effect against C. tropicalis and a fungistatic effect against C. albicans. In addition, an amount of 40% of the biofilm formed by C. albicans was eradicated using 8.2 µg/mL of REO after 1 h of exposure. The synergistic effect of REO together with some antifungal compounds was also investigated. Fractional inhibitory concentration index (FICI) showed synergic effects of REO combined with amphotericin B. REO Lead a disruption in the cellular membrane integrity, consequently resulting in increased intracellular leakage of the macromolecules, thus confirming that the plasma membrane is a target of the mode of action of REO against C. albicans and C. tropicalis

    Asymptotic Bethe Ansatz S-matrix and Landau-Lifshitz type effective 2-d actions

    Get PDF
    Motivated by the desire to relate Bethe ansatz equations for anomalous dimensions found on the gauge theory side of the AdS/CFT correspondence to superstring theory on AdS_5 x S5 we explore a connection between the asymptotic S-matrix that enters the Bethe ansatz and an effective two-dimensional quantum field theory. The latter generalizes the standard ``non-relativistic'' Landau-Lifshitz (LL) model describing low-energy modes of ferromagnetic Heisenberg spin chain and should be related to a limit of superstring effective action. We find the exact form of the quartic interaction terms in the generalized LL type action whose quantum S-matrix matches the low-energy limit of the asymptotic S-matrix of the spin chain of Beisert, Dippel and Staudacher (BDS). This generalises to all orders in the `t Hooft coupling an earlier computation of Klose and Zarembo of the S-matrix of the standard LL model. We also consider a generalization to the case when the spin chain S-matrix contains an extra ``string'' phase and determine the exact form of the LL 4-vertex corresponding to the low-energy limit of the ansatz of Arutyunov, Frolov and Staudacher (AFS). We explain the relation between the resulting ``non-relativistic'' non-local action and the second-derivative string sigma model. We comment on modifications introduced by strong-coupling corrections to the AFS phase. We mostly discuss the SU(2) sector but also present generalizations to the SL(2) and SU(1|1) sectors, confirming universality of the dressing phase contribution by matching the low-energy limit of the AFS-type spin chain S-matrix with tree-level string-theory S-matrix.Comment: 52 pages, 4 figures, Imperial-TP-AT-6-2; v2: new sections 7.3 and 7.4 computing string tree-level S-matrix in SL(2) and SU(1|1) sectors, references adde

    Stability and Reversible Oxidation of Sub-Nanometric Cu5 Metal Clusters: Integrated Experimental Study and Theoretical Modeling**

    Get PDF
    Sub-nanometer metal clusters have special physical and chemical properties, significantly different from those of nanoparticles. However, there is a major concern about their thermal stability and susceptibility to oxidation. In situ X-ray Absorption spectroscopy and Near Ambient Pressure X-ray Photoelectron spectroscopy results reveal that supported Cu5 clusters are resistant to irreversible oxidation at least up to 773 K, even in the presence of 0.15 mbar of oxygen. These experimental findings can be formally described by a theoretical model which combines dispersion-corrected DFT and first principles thermochemistry revealing that most of the adsorbed O2 molecules are transformed into superoxo and peroxo species by an interplay of collective charge transfer within the network of Cu atoms and large amplitude “breathing” motions. A chemical phase diagram for Cu oxidation states of the Cu5-oxygen system is presented, clearly different from the already known bulk and nano-structured chemistry of Cu
    • …
    corecore