17 research outputs found

    A Tale of Two States: Pluripotency Regulation of Telomeres.

    Get PDF
    Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background

    Crosstalk between pluripotency factors and higher-order chromatin organization.

    Get PDF
    Pluripotent cells are characterized by a globally open and accessible chromatin organization that is thought to contribute to cellular plasticity and developmental decision-making. We recently identified the pluripotency factor Nanog as a key regulator of this form of chromatin architecture in mouse embryonic stem cells. In particular, we demonstrated that the transcription factors Nanog and Sall1 co-dependently mediate the epigenetic state of pericentromeric heterochromatin to reinforce a more open and accessible organization in pluripotent cells. Here, we summarize our main findings and place the work into a broader context. We explore how heterochromatin domains could be targets of transcriptional networks in pluripotent cells and are coordinated with cell state. We propose this integration may be to balance the requirement for a dynamic and plastic chromatin organization in pluripotent cells, together with priming for a more restrictive nuclear compartmentalization that is triggered rapidly upon lineage commitment

    Chromatin organization in pluripotent cells: emerging approaches to study and disrupt function.

    Get PDF
    Translating the vast amounts of genomic and epigenomic information accumulated on the linear genome into three-dimensional models of nuclear organization is a current major challenge. In response to this challenge, recent technological innovations based on chromosome conformation capture methods in combination with increasingly powerful functional approaches have revealed exciting insights into key aspects of genome regulation. These findings have led to an emerging model where the genome is folded and compartmentalized into highly conserved topological domains that are further divided into functional subdomains containing physical loops that bring cis-regulatory elements to close proximity. Targeted functional experiments, largely based on designable DNA-binding proteins, have begun to define the major architectural proteins required to establish and maintain appropriate genome regulation. Here, we focus on the accessible and well-characterized system of pluripotent cells to review the functional role of chromatin organization in regulating pluripotency, differentiation and reprogramming

    Long-Range Enhancer Interactions Are Prevalent in Mouse Embryonic Stem Cells and Are Reorganized upon Pluripotent State Transition.

    Get PDF
    Transcriptional enhancers, including super-enhancers (SEs), form physical interactions with promoters to regulate cell-type-specific gene expression. SEs are characterized by high transcription factor occupancy and large domains of active chromatin, and they are commonly assigned to target promoters using computational predictions. How promoter-SE interactions change upon cell state transitions, and whether transcription factors maintain SE interactions, have not been reported. Here, we used promoter-capture Hi-C to identify promoters that interact with SEs in mouse embryonic stem cells (ESCs). We found that SEs form complex, spatial networks in which individual SEs contact multiple promoters, and a rewiring of promoter-SE interactions occurs between pluripotent states. We also show that long-range promoter-SE interactions are more prevalent in ESCs than in epiblast stem cells (EpiSCs) or Nanog-deficient ESCs. We conclude that SEs form cell-type-specific interaction networks that are partly dependent on core transcription factors, thereby providing insights into the gene regulatory organization of pluripotent cells.P.J.R.-G. is supported by the Wellcome Trust (WT093736), Biotechnology and Biological Sciences Research Council (BB/M022285/1 and BB/P013406/1), and the European Commission Network of Excellence EpiGeneSys (HEALTH-F4-2010-257082). This work was also supported by the following grants to P.F.: Medical Research Council (MR/L007150/1, MC_UP_1302/1, MC_UP_1302/3, MC_UP_1302/5), and Biotechnology and Biological Sciences Research Council (BB/J004480/1)

    Molecular profiling of aged neural progenitors identifies Dbx2 as a candidate regulator of age-associated neurogenic decline.

    Get PDF
    Adult neurogenesis declines with aging due to the depletion and functional impairment of neural stem/progenitor cells (NSPCs). An improved understanding of the underlying mechanisms that drive age-associated neurogenic deficiency could lead to the development of strategies to alleviate cognitive impairment and facilitate neuroregeneration. An essential step towards this aim is to investigate the molecular changes that occur in NSPC aging on a genomewide scale. In this study, we compare the transcriptional, histone methylation and DNA methylation signatures of NSPCs derived from the subventricular zone (SVZ) of young adult (3 months old) and aged (18 months old) mice. Surprisingly, the transcriptional and epigenomic profiles of SVZ-derived NSPCs are largely unchanged in aged cells. Despite the global similarities, we detect robust age-dependent changes at several hundred genes and regulatory elements, thereby identifying putative regulators of neurogenic decline. Within this list, the homeobox gene Dbx2 is upregulated in vitro and in vivo, and its promoter region has altered histone and DNA methylation levels, in aged NSPCs. Using functional in vitro assays, we show that elevated Dbx2 expression in young adult NSPCs promotes age-related phenotypes, including the reduced proliferation of NSPC cultures and the altered transcript levels of age-associated regulators of NSPC proliferation and differentiation. Depleting Dbx2 in aged NSPCs caused the reverse gene expression changes. Taken together, these results provide new insights into the molecular programmes that are affected during mouse NSPC aging, and uncover a new functional role for Dbx2 in promoting age-related neurogenic decline.This work was supported by grants to P.J.R.-G. from the 6 Wellcome Trust (WT093736) and the BBSRC (BB/P013406/1, BB/M022285/1), by funding from 7 Sapienza University of Rome (G.L, S.B., E.C) and by a grant from the Spanish Ministry of 8 Economy to P.B. (BFU2016-75412-R, co-financed by FEDER). The Babraham Institute Biological 9 Services Unit is supported by Campus Capability Grant funding from the BBSRC

    HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment.

    Get PDF
    Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the telomerase complex to telomeres through a not yet fully understood mechanism. Factors promoting telomerase-telomere interaction are expected to directly bind telomeres and physically interact with the telomerase complex. In search for such a factor we carried out a SILAC-based DNA-protein interaction screen and identified HMBOX1, hereafter referred to as homeobox telomere-binding protein 1 (HOT1). HOT1 directly and specifically binds double-stranded telomere repeats, with the in vivo association correlating with binding to actively processed telomeres. Depletion and overexpression experiments classify HOT1 as a positive regulator of telomere length. Furthermore, immunoprecipitation and cell fractionation analyses show that HOT1 associates with the active telomerase complex and promotes chromatin association of telomerase. Collectively, these findings suggest that HOT1 supports telomerase-dependent telomere elongation

    Investigation of the Mechanism That Underlies MS32 Minisatellite Instability in Cells That Use the Alternative Lengthening of Telomeres Pathway

    Full text link
    Cancer cells escape senescence by activating a telomere maintenance mechanism (TMM) to elongate telomeres and continue dividing. The most common TMM is the enzyme telomerase that adds telomeric repeats. However, some cancer cells activate the Alternative Lengthening of Telomeres (ALT), a recombination-based mechanism to extend shortened telomeres. One of the most peculiar features of ALT+ cells is the instability at the MS32 minisatellite (D1S8), especially as six other minisatellites remained stable in these cells. As MS32 instability correlates with activation of the ALT mechanism, it is likely that the underlying process depends, at least in part, on the same proteins. Thus, a better understanding of the molecular mechanism that underlies ALT may be gained through knowing how and why the MS32 minisatellite becomes unstable in ALT+ cells. Several hypotheses that might explain MS32 instability in ALT+ cells were investigated. In this study it was shown that the instability is restricted to the minisatellite itself and no transcriptional or copy-number changes distinguish this region between ALT+ and non-ALT cells. Interestingly, changes in the DNA methylation-status adjacent to one end of the minisatellite were found, which might indicate that ALT+ cells have a different chromatin conformation around the MS32 minisatellite. Additionally, the mutant molecules arising at MS32 in ALT+ cells seem to derive from intra-allelic processes. Also, EXO1 expression was higher in ALT+ compared to ALT- cells. Thus, our current model proposes that a protein (perhaps hEXO1) involved in lagging-strand synthesis and DNA repair is preferentially recruited to the telomeres in ALT+ cells and this may cause the accumulation of unprocessed 5’ DNA flaps at MS32 during replication. Subsequent DNA repair at MS32, by error-prone processes, may underlie the instability seen in ALT+ cells

    A new role for histone deacetylase 5 in the maintenance of long telomeres.

    Full text link
    Telomeres are major regulators of genome stability and cell proliferation. A detailed understanding of the mechanisms involved in their maintenance is of foremost importance. Of those, telomere chromatin remodeling is probably the least studied; thus, we intended to explore the role of a specific histone deacetylase on telomere maintenance. We uncovered a new role for histone deacetylase 5 (HDAC5) in telomere biology. We report that HDAC5 is recruited to the long telomeres of osteosarcoma- and fibrosarcoma-derived cell lines, where it ensures proper maintenance of these repetitive regions. Indeed, depletion of HDAC5 by RNAi resulted in the shortening of longer telomeres and homogenization of telomere length in cells that use either telomerase or an alternative mechanism of telomere maintenance. Furthermore, we present evidence for the activation of telomere recombination on depletion of HDAC5 in fibrosarcoma telomerase-positive cancer cells. Of potential importance, we also found that depletion of HDAC5 sensitizes cancer cells with long telomeres to chemotherapeutic drugs. Cells with shorter telomeres were used to control the specificity of HDAC5 role in the maintenance of long telomeres. HDAC5 is essential for the length maintenance of long telomeres and its depletion is required for sensitization of cancer cells with long telomeres to chemotherapy. -Novo, C. L., Polese, C., Matheus, N., Decottignies, A., Londono-Vallejo, A., Castronovo, V., Mottet, D. A new role for histone deacetylase 5 in the maintenance of long telomeres
    corecore