209 research outputs found
HDNetDB: A Molecular Interaction Database for Network-Oriented Investigations into Huntington’s Disease
Huntington's disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Although HD is monogenic, its molecular manifestation appears highly complex and involves multiple cellular processes. The recent application of high throughput platforms such as microarrays and mass-spectrometry has indicated multiple pathogenic routes. The massive data generated by these techniques together with the complexity of the pathogenesis, however, pose considerable challenges to researchers. Network-based methods can provide valuable tools to consolidate newly generated data with existing knowledge, and to decipher the interwoven molecular mechanisms underlying HD. To facilitate research on HD in a network-oriented manner, we have developed HDNetDB, a database that integrates molecular interactions with many HD-relevant datasets. It allows users to obtain, visualize and prioritize molecular interaction networks using HD-relevant gene expression, phenotypic and other types of data obtained from human samples or model organisms. We illustrated several HDNetDB functionalities through a case study and identified proteins that constitute potential cross-talk between HD and the unfolded protein response (UPR). HDNetDB is publicly accessible at http://hdnetdb.sysbiolab.eu.CHDI Foundation [A-2666]; Portuguese Fundacao para a Ciencia e a Tecnologia [SFRH/BPD/70718/2010, SFRH/BPD/96890/2013, IF/00881/2013, UID/BIM/04773/2013 - CBMR, UID/Multi/04326/2013 - CCMAR]info:eu-repo/semantics/publishedVersio
Comparative study on the use of specific and heterologous microsatellite primers in the stingless bees Melipona rufiventris and M. mondury (Hymenoptera, Apidae)
Due to their high degree of polymorphism, microsatellites are considered useful tools for studying population genetics. Nevertheless, studies of genetic diversity in stingless bees by means of these primers have revealed a low level of polymorphism, possibly the consequence of the heterologous primers used, since in most cases these were not specifically designed for the species under consideration. Herein we compared the number of polymorphic loci and alleles per locus, as well as observed heterozygosity in Melipona rufiventris and M. mondury populations, using specific and heterologous primers. The use of specific primers placed in evidence the greater frequency of polymorphic loci and alleles per locus, besides an expressive increase in observed heterozygosity in M. rufiventris and M. mondury, thereby reinforcing the idea that populational studies should be undertaken by preferably using species-specific microsatellite primers
Ocean warming threatens southern right whale population recovery
Funding: This work was supported by CAPES doctoral scholarship (M.A.), CAPES-PRINT grant 88887.370641/2019-00 (M.A.), CNPQ research grant 305573/2013-6 (P.C.S.-L.), and CNPQ research grant 407190/2012-0 (F.G.D.-J.). Funding for aerial surveys since 1971 was provided by numerous donors through Ocean Alliance and Instituto de Conservación de Ballenas such as Wildlife Conservation Society, National Geographic Society, World Wildlife Fund, Alfredo Fortabat Foundation, Turner Foundation, Canadian Whale Institute, I. Kerr, A. L. de Fortabat, S. Haney, A. and J. Moss, A. Morse, P. Singh, P. Logan, N. Griffis, and C. Walcott.Whales contribute to marine ecosystem functioning, and they may play a role in mitigating climate change and supporting the Antarctic krill (Euphausia superba) population, a keystone prey species that sustains the entire Southern Ocean (SO) ecosystem. By analyzing a five-decade (1971–2017) data series of individual southern right whales (SRWs; Eubalaena australis) photo-identified at Península Valdés, Argentina, we found a marked increase in whale mortality rates following El Niño events. By modeling how the population responds to changes in the frequency and intensity of El Niño events, we found that such events are likely to impede SRW population recovery and could even cause population decline. Such outcomes have the potential to disrupt food-web interactions in the SO, weakening that ecosystem’s contribution to the mitigation of climate change at a global scale.Publisher PDFPeer reviewe
Genetic variability in five populations of Partamona helleri (Hymenoptera, Apidae) from Minas Gerais State, Brazil
Partamona is a Neotropical genus of stingless bees that comprises 33 species distributed from Mexico to southern Brazil. These bees are well-adapted to anthropic environments and build their nests in several substrates. In this study, 66 colonies of Partamona helleri from five localities in the Brazilian state of Minas Gerais (São Miguel do Anta, Teixeiras, Porto Firme, Viçosa and Rio Vermelho) were analyzed using nine microsatellite loci in order to assess their genetic variability. Low levels of observed (Ho = 0.099-0.137) and expected (H e = 0.128-0.145) heterozygosity were encountered and revealed discrete genetic differentiation among the populations (F ST = 0.025). AMOVA further showed that most of the total genetic variation (94.24%) in P. helleri was explained by the variability within local populations
Economic viability of the third milking in systems of production using closed-circuit mechanical milking
Fractal Characteristics of May-Grünwald-Giemsa Stained Chromatin Are Independent Prognostic Factors for Survival in Multiple Myeloma
The use of computerized image analysis for the study of nuclear texture features has provided important prognostic information for several neoplasias. Recently fractal characteristics of the chromatin structure in routinely stained smears have shown to be independent prognostic factors in acute leukemia. In the present study we investigated the influence of the fractal dimension (FD) of chromatin on survival of patients with multiple myeloma.We analyzed 67 newly diagnosed patients from our Institution treated in the Brazilian Multiple Myeloma Study Group. Diagnostic work-up consisted of peripheral blood counts, bone marrow cytology, bone radiograms, serum biochemistry and cytogenetics. The International Staging System (ISS) was used. In every patient, at least 40 digital nuclear images from diagnostic May-Grünwald-Giemsa stained bone marrow smears were acquired and transformed into pseudo-3D images. FD was determined by the Minkowski-Bouligand method extended to three dimensions. Goodness-of-fit of FD was estimated by the R(2) values in the log-log plots. The influence of diagnostic features on overall survival was analyzed in Cox regressions. Patients that underwent autologous bone marrow transplantation were censored at the day of transplantation.Median age was 56 years. According to ISS, 14% of the patients were stage I, 39% were stage II and 47% were stage III. Additional features of a bad prognosis were observed in 46% of the cases. When stratifying for ISS, both FD and its goodness-of-fit were significant prognostic factors in univariate analyses. Patients with higher FD values or lower goodness-of-fit showed a worse outcome. In the multivariate Cox-regression, FD, R(2), and ISS stage entered the final model, which showed to be stable in a bootstrap resampling study.Fractal characteristics of the chromatin texture in routine cytological preparations revealed relevant prognostic information in patients with multiple myeloma
Characterization of the deposition of collagen fibers and Lithogenic potential in bladder of rats submitted to a sugar cane biopolymer graft
Benefícios socioeconômicos da adoção de novas tecnologias no cultivo do açaí no Estado do Pará
- …
