750 research outputs found

    The Pathogenic Role of the Adaptive Immune Response to Modified LDL in Diabetes

    Get PDF
    The main causes of morbidity and mortality in diabetes are macro and microvascular complications, including atherosclerosis, nephropathy, and retinopathy. As the definition of atherosclerosis as a chronic inflammatory disease became widely accepted, it became important to define the triggers of vascular inflammation. Oxidative and other modifications of lipids and lipoproteins emerged as major pathogenic factors in atherosclerosis. Modified forms of LDL (mLDL) are pro-inflammatory by themselves, but, in addition, mLDLs including oxidized, malondialdehyde (MDA)-modified, and advanced glycation end (AGE)-product-modified LDL induce autoimmune responses in humans. The autoimmune response involves T cells in the arterial wall and synthesis of IgG antibodies. The IgG auto-antibodies that react with mLDLs generate immune complexes (IC) both intra and extravascularly, and those IC activate the complement system as well as phagocytic cells via the ligation of Fcγ receptors. In vitro studies proved that the pro-inflammatory activity of IC containing mLDL (mLDL-IC) is several-fold higher than that of the modified LDL molecules. Clinical studies support the pathogenic role of mLDL-IC in the development of macrovascular disease patients with diabetes. In type 1 diabetes, high levels of oxidized and AGE-LDL in IC were associated with internal carotid intima-media thickening and coronary calcification. In type 2 diabetes, high levels of MDA-LDL in IC predicted the occurrence of myocardial infarction. There is also evidence that mLDL-IC are involved in the pathogenesis of diabetic nephropathy and retinopathy. The pathogenic role of mLDL-IC is not unique to diabetic patients, because those IC are also detected in non-diabetic individuals. But mLDL-IC are likely to reach higher concentrations and have a more prominent pathogenic role in diabetes due to increased antigenic load secondary to high oxidative stress and to enhanced autoimmune responses in type 1 diabetes

    Low Density Lipoprotein Metabolism by Human Macrophages Activated with Low Density Lipoprotein Immune Complexes: A Possible Mechanism of Foam Cell Formation

    Get PDF
    Human monocytes are known to be multifunctional cells that combine a variety of functions, including phagocytosis, antigen processing and presentation to immune cells, secretion of a large number of bioactive products with significant roles in the immune and inflammatory reactions, and the ability to kill tumor cells and other abnormal cells by a variety of mechanisms, including antibody-dependent cell-mediated cytotoxicity (1-5). Tissue macrophages are believed to derive from circulating monocytes, although the two types of cells differ by a variety of morphological and functional criteria (6-10). The role of macrophages is not always well understood, since it combines potentially useful properties related to its ability to ingest and process foreign and altered materials with the capacity to secrete large amounts of mediators having the potential to cause inflammatory changes and tissue damage in general (11-14). In atherosclerosis, substantial evidence has been gathered suggesting that the foam cells seen in early atherosclerotic plaques are derived from monocytes/macrophages (15-18). The formation and subendothelial accumulation of foam cells are believed to represent a critical event in the onset of atheromatous plaque formation (19). Some interesting correlations can be drawn between the involvement of macrophages in the pathogenesis of atherosclerosis and increasing evidence suggesting that immunologic mechanisms may influence the development or evolution of this pathologic process. In the early 1970s, it was postulated that immune mechanisms involving circulating immune complexes could contribute to the pathogenesis of atherosclerosis (20). The evidence supporting this role of immune complexes was both experimental (animals undergoing serum sickness and given a lipid-rich diet developed accelerated atherosclerosis [21]) and clinical (patients with IgA myelomas with anti-lipoprotein activity had massive hyperlipemia and accelerated atherosclerosis [22]). More recently, it was also shown that immune complexes (IC)1 involving low density lipoprotein (LDL) induce profound changes on cholesterol metabolism at the cellular level (23). Further support for the involvement of IC in the pathogenesis of atherosclerosis has been recently obtained by Szondy et al. (24), who demonstrated increased levels of IC and anti-LDL antibodies in patients with clinical manifestations of coronary heart disease. The possibility that IC interactions with macrophages may lead to their activation and, therefore, play a pathogenic role in the development of atherosclerosis is extremely challenging. Until recently, the mechanism proposed to explain how monocyte-derived macrophages could be transformed into foam cells has focused upon the interaction between macrophages and modified LDL or lipoproteins of abnormal composition, such as β-very low density lipoproteins (VLDL). Modified LDL can be taken up in a nonregulated fashion via the scavenger receptor, resulting in the intracellular accumulation of cholesteryl esters (CE) and in the formation of a foam cell. In contrast, it has been observed that cultured macrophages exposed to native LDL (NLDL) do not accumulate CE due to the stringent regulation of LDL receptors. However, it has been recently shown that in certain conditions, macrophages exposed to native LDL may accumulate CE. In our laboratory, we have shown that human macrophages stimulated with microbial or microbial-related products have an increased uptake of N-LDL and accumulated CE (25). Tabas et al. (26) observed increased uptake of N-LDL and concomitant CE accumulation in J774 cells, a mouse macrophage-like tumor cell line. They postulated that this was due to the enhanced metabolic activity of this tumor cell line (26). Klimov, et al. (27) had shown excessive CE accumulation in mouse peritoneal macrophages exposed to LDL immune complexes compared with control cells. A common denominator for all these observations is the known ability of microbial products and immune complexes to activate macrophages. Therefore, we decided to examine the effect of macrophage activation on N-LDL metabolism. More specifically, we wanted to investigate the effect of LDL-anti-LDL IC on N-LDL and cholesterol metabolism in human macrophages, and determine whether this type of IC can induce the transformation of human macrophages into foam cells contributing to the development of atherosclerosis

    Clinical, Molecular Characterization and Long-Term Follow-Up of a Patient with Neonatal Severe Hyperparathyroidism

    Get PDF
    Heterozygous inactivating pathogenic variants of the calcium-sensing receptor encoding gene cause autosomal dominant familial hypocalciuric hypercalcemia, whereas mutations that inactivate both alleles cause neonatal severe hyperparathyroidism, a rare and potentially fatal disease. We present the clinical and genetic characterization of a Portuguese family with familial hypocalciuric hypercalcemia/neonatal severe hyperparathyroidism as well as the long-term follow-up of the proband. The newborn was admitted due to progressive hypotonia, feeding refusal, and dehydration. Serum calcium and parathormone levels were markedly increased. Radiological evaluation revealed osteopenia and several fractures. Total parathyroidectomy with the reimplantation of a quarter of one gland was performed. At 15 years old, she is clinically well, has normal calcium levels, and detectable parathormone values while under calcium and α-calcidiol treatment. Calcium-sensing receptor encoding gene sequencing revealed a germline homozygous nonsense pathogenic variant later confirmed as inherited.info:eu-repo/semantics/publishedVersio

    Differential Trafficking of Oxidized LDL and Oxidized LDL Immune Complexes in Macrophages: Impact on Oxidative Stress

    Get PDF
    Oxidized low-density lipoproteins (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) contribute to formation of lipid-laden macrophages (foam cells). It has been shown that oxLDL-IC are considerably more efficient than oxLDL in induction of foam cell formation, inflammatory cytokines secretion, and cell survival promotion. Whereas oxLDL is taken up by several scavenger receptors, oxLDL-IC are predominantly internalized through the FCgamma receptor I (FCgamma RI). This study examined differences in intracellular trafficking of lipid and apolipoprotein moieties of oxLDL and oxLDL-IC and the impact on oxidative stress.Fluorescently labeled lipid and protein moieties of oxLDL co-localized within endosomal and lysosomal compartments in U937 human monocytic cells. In contrast, the lipid moiety of oxLDL-IC was detected in the endosomal compartment, whereas its apolipoprotein moiety advanced to the lysosomal compartment. Cells treated with oxLDL-IC prior to oxLDL demonstrated co-localization of internalized lipid moieties from both oxLDL and oxLDL-IC in the endosomal compartment. This sequential treatment likely inhibited oxLDL lipid moieties from trafficking to the lysosomal compartment. In RAW 264.7 macrophages, oxLDL-IC but not oxLDL induced GFP-tagged heat shock protein 70 (HSP70) and HSP70B', which co-localized with the lipid moiety of oxLDL-IC in the endosomal compartment. This suggests that HSP70 family members might prevent the degradation of the internalized lipid moiety of oxLDL-IC by delaying its advancement to the lysosome. The data also showed that mitochondrial membrane potential was decreased and generation of reactive oxygen and nitrogen species was increased in U937 cell treated with oxLDL compared to oxLDL-IC.Findings suggest that lipid and apolipoprotein moieties of oxLDL-IC traffic to separate cellular compartments, and that HSP70/70B' might sequester the lipid moiety of oxLDL-IC in the endosomal compartment. This mechanism could ultimately influence macrophage function and survival. Furthermore, oxLDL-IC might regulate the intracellular trafficking of free oxLDL possibly through the induction of HSP70/70B'

    Relation of hyperlipidemia in serum and loss of high density lipoproteins in urine in the nephrotic syndrome

    Get PDF
    The mechanism leading to hyperlipidemia in the nephrotic syndrome is not fully understood but may be related in part to loss of high density lipoproteins in the urine of patients with nephrosis. To prove this hypothesis, we compared serum lipoprotein profiles with the excretion of high density lipoproteins in urine in 19 nephrotic patients. Serum cholesterol ranged from 19–152 (median value 45) mg/dl in very low density lipoproteins (VLDL), from 130–443 (median 186) mg/dl in low density lipoproteins (LDL) and from 19–64 (median 33) mg/dl in high density lipoproteins (HDL). Hyperlipoproteinemia was found in 17 patients, which was classified as phenotype IIa (Fredrickson) in 2, as phenotype IIb in 9 and as phenotype IV in 6 subjects. Two patients showed normal lipoprotein patterns. VLDL- and LDL-cholesterol were not found in detectable amounts in urine, whereas HDL-cholesterol was measured in low concentrations from 0.1–8.3 mg/24 h in all samples. There was no correlation between serum HDL-cholesterol and urinary HDL-cholesterol, but a positive correlation between serum LDL-cholesterol and urinary HDL-cholesterol (r= +0.54, p < 0.05). However, the total amount of the daily urinary loss of HDL (<1% of total plasma HDL) seems not to be sufficient to explain hyperlipoproteinemia in the nephrotic syndrome

    Pathophysiology of elevated ascites fluid cholesterol in malignant ascites

    Get PDF
    The existence of marked elevations of ascitic fluid cholesterol has been observed in patients with peritoneal carcinomatosis compared to patients with cirrhosis and has been found useful in differential diagnosis. This finding could be caused by an enhanced movement of plasma lipoproteins into the peritoneal cavity. To test this hypothesis we determined the fasting concentrations of total, high density lipoprotein (HDL)- and low density lipoprotein (LDL)-cholesterol, apolipoprotein-A1 (apo-A1) and apolipoprotein-B (apo-B) in serum and ascites of 17 patients with cirrhosis and 16 patients with peritoneal carcinomatosis. The movement of proteins from plasma to ascites was calculated from the ascites/serum concentration ratios of six different sized proteins with a molecular mass ranging from 54 kDa to 971 kDa. Mean values (mg/dl) for total cholesterol (92.6 vs. 21.0), HDL-cholesterol (15.6 vs. 1.8), LDL-cholesterol (63.4 vs. 16.1), apo-A1 (50.2 vs. 13.6) and apo-B (41.2 vs. 12.9) in ascites were significantly higher in peritoneal carcinomatosis than in cirrhosis. These differences could only partially be explained by the higher serum concentrations of these parameters in peritoneal carcinomatosis, but were mainly due to a lower selectivity for the movement of plasma proteins and lipoproteins into ascites (mean ascites/serum (A/S) ratio: 0.30–0.77) in peritoneal carcinomatosis as compared to cirrhosis (mean ascites/serum ratio: 0.11–0.21). In both groups about 85% of the total cholesterol in serum and ascites consisted of HDL- and LDL-cholesterol. These findings support the hypothesis that elevations in ascitic cholesterol in peritoneal carcinomatosis compared to cirrhosis are mainly caused by the increased movement of plasma HDL and LDL into the peritoneal cavity

    Risk Factors Related to Inflammation and Endothelial Dysfunction in the DCCT/EDIC Cohort and Their Relationship With Nephropathy and Macrovascular Complications

    Get PDF
    OBJECTIVE—Because endothelial cell dysfunction and inflammation are key contributors to the development of complications in type 1 diabetes, we studied risk factors related to endothelial dysfunction and inflammation (C-reactive protein and fibrinogen, soluble vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and E-selectin, and fibrinolytic markers) in a subgroup of patients from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Intervention and Complications (EDIC) study cohort

    Plasma Levels of Lathosterol and Phytosterols in Relation to Age, Sex, Anthropometric Parameters, Plasma Lipids and Apolipoprotein E Phenotype in 160 Dutch Families

    Get PDF
    In this study, the relation of plasma levels of lathosterol (an indicator of whole body cholesterol synthesis) and plant sterols (indicator of cholesterol absorption) with age, sex, weight, height, plasma lipids, and lipoproteins, and with apolipoprotein (apo) E phenotype, was investigated in a group of 160 nuclear families consisting of twins living with their parents. Lathosterol was higher in fathers than in mothers, but not different between boys and girls. In each of these four groups, there was a strong correlation with plasma and low-density lipoprotein (LDL)-cholesterol and -triglyceride, as well as with body weight, but not with height or high-density lipoprotein (HDL)-cholesterol. In adults, lathosterol was inversely correlated with plant sterols. Lathosterol was higher in children with E4 3 phenotype than in those with E3 3 or E3 2; in adults, lathosterol did not differ among the various E phenotypes. The plasma levels of the two plant sterols, campesterol and β-sitosterol, were highly correlated with each other, and also with plasma or LDL-cholesterol, in each of the four groups. Plant sterols were higher in adults or children with E4 3 phenotype as compared with those with other phenotypes. In multivariate analysis (performed separately for two groups of adults and children) plasma cholesterol, plasma plant sterols, plasma triglycerides, and weight were found to make significant contributions to the variation of lathosterol in all groups, and E phenotype and sex only in one group, while age did not contribute in any group. For plant sterols, plasma cholesterol and lathosterol were significant independent predictors in all groups, sex and E phenotype only in one or two of the four groups, and age, weight, height, and HDL-cholesterol in none of the groups. Thus, although lathosterol and plant sterols were weakly related to E phenotype in some of the groups, these findings do not support a major role for the E phenotype in determining rates of cholesterol synthesis or absorption, as claimed by others. © 1991

    Hypoglycemic effect of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits in diabetic rat

    Get PDF
    The aim of the present study was to investigate the hypoglycemic effect of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits either used individually or in a combination on alloxan diabetic rats. These fruits are reported to be rich in antioxidants, flavonoids and phenolics that can potentially fight against diabetes mellitus. Male albino rats were divided into 5 groups: normal control, alloxan-diabetic control, diabetic rats treated with white mulberry fruit powder at 5% in the diet, diabetic rats treated with black mulberry fruit powder at 5% in the diet and diabetic rats treated with mixture of white and black mulberry fruits powder at 5% in the diet. After 4 weeks of treatment, blood glucose level, liver and kidney enzymes activity, lipid profile, lipid peroxidation and histopathological studies on liver, kidney and pancreas were evaluated. The mixture of white and black mulberry fruits showed the most significant (p < 0.05) improvement in feed efficiency ratio with increasing body weight gain, as well as decrease in blood glucose level and liver-kidney dysfunction when compared with diabetic control rats. Significant decrease in serum cholesterol, triglycerides and low density lipoprotein cholesterol (LDLc) as well as significant increase in high density lipoprotein cholesterol (HDLc) in diabetic rats was observed with all treatments. Moreover, mulberry fruits administration caused significant inhibition in lipid peroxidation and α-amylase activity. In addition, the beneficial effect of all treatments was further confirmed with histopathological examination of liver, kidney and pancreas. This study reveals hypoglycemic and hypolipidemic effects of white and black mulberry fruits either used individually or in combination as a dietary supplement in alloxan diabetic rats
    corecore