12 research outputs found

    A new heparan sulfate from the mollusk nodipecten nodosus inhibits merozoite invasion and disrupts rosetting and cytoadherence of plasmodium falciparum

    Get PDF
    Despite treatment with effective antimalarial drugs, the mortality rate is still high in severe cases of the disease, highlighting the need to find adjunct therapies that can inhibit the adhesion of Pf-iEs. In this context, we evaluated a new heparan sulfate (HS) from Nodipecten nodosus for antimalarial activity and inhibition of P. falciparum cytoadhesion and rosetting. Parasite inhibition was measured by SYBR green using a cytometer. HS was assessed in rosetting and cytoadhesion assays under static and flow conditions using CHO and HLEC cells expressing ICAM1 and CSA, respectively. This HS inhibited merozoite invasion similar to heparin. Moreover, mollusk HS decreased cytoadherence of P. falciparum to CSA (chondroitin sulfate A) and ICAM-1 (intercellular adhesion molecule-1) on the surface of endothelial cells under static and flow conditions. In addition, this glycan efficiently disrupted rosettes. These findings support a potential use for mollusk HS as adjunct therapy for severe malaria114CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIRO - FAPERJFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPnão temnão tem2012/16525-2; 2017/18611-7; 2010/18571-6; 2015/20774-

    Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions

    Get PDF
    Planning the adaptation of agriculture and forestry landscapes to climate change remains challenging due to the need for integrating substantial amounts of information. This information ranges from climate scenarios, geographical site information, socio-economic data and several possible adaptation measures. Thus, there is an urgent need to have a framework that is capable of organizing adaptation strategies and measures in the agriculture and forestry sectors in Mediterranean climatic regions. Additionally, this framework should provide a cause effect relation with climate vulnerability to adequately support the development of adaptation planning at municipal and local (farm) level. In this context, we propose to test and evaluate a framework for climate adaptation of the agriculture and forestry sectors, based on the local causal-effect relation between adaptation strategies and measures and the level of vulnerability reduction achieved for Mediterranean areas. The framework was developed based on the combination of the DPSIR (Driving forces, Pressures, State, Impacts, Responses) and Vulnerability frameworks and reviewed 162 practical adaptation measures, further organized into strategies, complemented by a set of efficacy indicators. The framework was tested with 70 stakeholders in six stakeholder workshops for the planning of two farms and one municipal climate adaptation study, that are now in actual implementation and monitoring. The framework is composed by a set of eight adaptation strategies in which adaptation measures are clustered and assessed using efficacy indicators. In the evaluation of the adaptation framework, 96% of stakeholders considered its content as good or very good and 89% considered the final outcomes as good or very good. Finally, the framework was also used to assess and compare the adaptation strategies and measures presented in the climate adaptation plans of the three case studies. On average, 52.2% of the adaptation measures selected by the three case studies are dedicated to Ecosystem Resilience, 30.9% to Adaptive Capacity, 9.1% to Microclimates, 7.4% to Protection, and 0.3% to Mitigation strategies. This framework was considered effective in supporting adaptation planning at farm and municipal levels and useful to assess and compare adaptation plans in the frame of vulnerability reduction. Future studies can further contribute to support adaptation planning in these sectors by using, developing and streamlining this framework to additional and different socio-ecological contextsinfo:eu-repo/semantics/publishedVersio

    Chloroquine: Modes Of Action Of An Undervalued Drug

    No full text
    For more than two decades, chloroquine (CQ) was largely and deliberately used as first choice drug for malaria treatment. However, worldwide increasing cases of resistant strains of Plasmodium have hampered its use. Nevertheless, CQ has recently been tested as adjunct therapy in several inflammatory situations, such as rheumatoid arthritis and transplantation procedures, presenting intriguing and promising results. In this review, we discuss recent findings and CQ mechanisms of action vis-à-vis its use as a broad adjunct therapy. © 2013 Elsevier B.V.1531/Fev5057(2011) World Malaria Report 2011, , World Health Organization, Geneva World Health OrganizationA research agenda for malaria eradication: drugs (2011) PLoS Medicine, 8, pp. e1000402. , malERA Consultative Group on DrugsPlowe, C.V., The evolution of drug-resistant malaria (2009) Transactions of the Royal Society of Tropical Medicine and Hygiene, 103 (SUPPL. 1), pp. S11-S14Summers, R.L., Nash, M.N., Martin, R.E., Know your enemy: understanding the role of PfCRT in drug resistance could lead to new antimalarial tactics (2012) Cellular and Molecular Life Sciences, 69, pp. 1967-1995A randomized trial of hydroxychloroquine in early rheumatoid arthritis: the HERA Study (1995) American Journal of Medicine, 98, pp. 156-168Bezerra, E.L., Vilar, M.J., da Trindade Neto, P.B., Sato, E.L., Double-blind, randomized, controlled clinical trial of clofazimine compared with chloroquine in patients with systemic lupus erythematosus (2005) Arthritis and Rheumatism, 52, pp. 3073-3078Ben-Zvi, I., Kivity, S., Langevitz, P., Shoenfeld, Y., Hydroxychloroquine: from malaria to autoimmunity (2012) Clinical Reviews in Allergy & Immunology, 42, pp. 145-153Homewood, C.A., Warhurst, D.C., Peters, W., Baggaley, V.C., Lysosomes, pH and the anti-malarial action of chloroquine (1972) Nature, 235, pp. 50-52Chiang, G., Sassaroli, M., Louie, M., Chen, H., Stecher, V.J., Sperber, K., Inhibition of HIV-1 replication by hydroxychloroquine: mechanism of action and comparison with zidovudine (1996) Clinical Therapeutics, 18, pp. 1080-1092Sperber, K., Chiang, G., Chen, H., Ross, W., Chusid, E., Gonchar, M., Comparison of hydroxychloroquine with zidovudine in asymptomatic patients infected with human immunodeficiency virus type 1 (1997) Clinical Therapeutics, 19, pp. 913-923Bernstein, H.N., Ophthalmologic considerations and testing in patients receiving long-term antimalarial therapy (1983) American Journal of Medicine, 75, pp. 25-34Karres, I., Chloroquine inhibits proinflammatory cytokine release into human whole blood (1998) American Journal of Physiology, 274, pp. R1058-R1064Ertel, W., Morrison, M.H., Ayala, A., Chaudry, I.H., Chloroquine attenuates hemorrhagic shock-induced immunosuppression and decreases susceptibility to sepsis (1992) Archives of Surgery, 127, pp. 70-75. , [discussion 75-76]Loehberg, C.R., Strissel, P.L., Dittrich, R., Strick, R., Dittmer, J., Dittmer, A., Akt and p53 are potential mediators of reduced mammary tumor growth by Chloroquine and the mTOR inhibitor RAD001 (2012) Biochemical Pharmacology, 83, pp. 480-488Sperber, K., Kalb, T.H., Stecher, V.J., Banerjee, R., Mayer, L., Inhibition of human immunodeficiency virus type 1 replication by hydroxychloroquine in T cells and monocytes (1993) AIDS Research and Human Retroviruses, 9, pp. 91-98Yoshimura, A., Kuroda, K., Kawasaki, K., Yamashina, S., Maeda, T., Ohnishi, S., Infectious cell entry mechanism of influenza virus (1982) Journal of Virology, 43, pp. 284-293Shibata, M., Aoki, H., Tsurumi, T., Sugiura, Y., Nishiyama, Y., Suzuki, S., Mechanism of uncoating of influenza B virus in MDCK cells: action of chloroquine (1983) Journal of General Virology, 64, pp. 1149-1156Ooi, E.E., Chew, J.S., Loh, J.P., Chua, R.C., In vitro inhibition of human influenza A virus replication by chloroquine (2006) Virology Journal, 3, p. 39Di Trani, L., Savarino, A., Campitelli, L., Norelli, S., Puzelli, S., D'Ostilio, D., Different pH requirements are associated with divergent inhibitory effects of chloroquine on human and avian influenza A viruses (2007) Virology Journal, 4, p. 39Misinzo, G., Delputte, P.L., Nauwynck, H.J., Inhibition of endosome-lysosome system acidification enhances porcine circovirus 2 infection of porcine epithelial cells (2008) Journal of Virology, 82, pp. 1128-1135Savarino, A., A historical sketch of the discovery and development of HIV-1 integrase inhibitors (2006) Expert Opinion on Investigational Drugs, 15, pp. 1507-1522Bernstein, H.N., Chloroquine ocular toxicity (1967) Survey of Ophthalmology, 12, pp. 415-447Sperber, K., Louie, M., Kraus, T., Proner, J., Sapira, E., Lin, S., Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1 (1995) Clinical Therapeutics, 17, pp. 622-636Murray, S.M., Down, C.M., Boulware, D.R., Stauffer, W.M., Cavert, W.P., Schacker, T.W., Reduction of immune activation with chloroquine therapy during chronic HIV infection (2010) Journal of Virology, 84, pp. 12082-12086Piconi, S., Parisotto, S., Rizzardini, G., Passerini, S., Terzi, R., Argenteri, B., Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders (2011) Blood, 118, pp. 3263-3272Soumelis, V., Scott, I., Gheyas, F., Bouhour, D., Cozon, G., Cotte, L., Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients (2001) Blood, 98, pp. 906-912Martinson, J.A., Montoya, C.J., Usuga, X., Ronquillo, R., Landay, A.L., Desai, S.N., Chloroquine modulates HIV-1-induced plasmacytoid dendritic cell alpha interferon: implication for T-cell activation (2010) Antimicrobial Agents and Chemotherapy, 54, pp. 871-881Jiang, M.C., Lin, J.K., Chen, S.S., Inhibition of HIV-1 Tat-mediated transactivation by quinacrine and chloroquine (1996) Biochemical and Biophysical Research Communications, 226, pp. 1-7Fredericksen, B.L., Wei, B.L., Yao, J., Luo, T., Garcia, J.V., Inhibition of endosomal/lysosomal degradation increases the infectivity of human immunodeficiency virus (2002) Journal of Virology, 76, pp. 11440-11446Canadian Consensus Conference on hydroxychloroquine (2000) Journal of Rheumatology, 27, pp. 2919-2921. , Canadian Rheumatology AssociationGladman, D.D., Urowitz, M.B., Senecal, J.L., Fortin, P.J., Petty, R.E., Esdaile, J.M., Aspects of use of antimalarials in systemic lupus erythematosus (1998) Journal of Rheumatology, 25, pp. 983-985Rahman, A., Isenberg, D.A., Systemic lupus erythematosus (2008) New England Journal of Medicine, 358, pp. 929-939Slater, A.F., Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum (1993) Pharmacology & Therapeutics, 57, pp. 203-235Tan, E.M., Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology (1989) Advances in Immunology, 44, pp. 93-151Casciola-Rosen, L.A., Anhalt, G., Rosen, A., Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes (1994) Journal of Experimental Medicine, 179, pp. 1317-1330A randomized study of the effect of withdrawing hydroxychloroquine sulfate in systemic lupus erythematosus. The Canadian Hydroxychloroquine Study Group (1991) N Engl J Med, 324, pp. 150-154Fessler, B.J., Systemic lupus erythematosus in three ethnic groups: XVI. Association of hydroxychloroquine use with reduced risk of damage accrual (2005) Arthritis and Rheumatism, 52, pp. 1473-1480Alarcon, G.S., Effect of hydroxychloroquine on the survival of patients with systemic lupus erythematosus: data from LUMINA, a multiethnic US cohort (LUMINAL) (2007) Annals of the Rheumatic Diseases, 66, pp. 1168-1172Ruiz-Irastorza, G., Effect of antimalarials on thrombosis and survival in patients with systemic lupus erythematosus (2006) Lupus, 15, pp. 577-583Tam, L.S., Gladman, D.D., Hallett, D.C., Rahman, P., Urowitz, M.B., Effect of antimalarial agents on the fasting lipid profile in systemic lupus erythematosus (2000) Journal of Rheumatology, 27, pp. 2142-2145Levy, R.A., Hydroxychloroquine (HCQ) in lupus pregnancy: double-blind and placebo-controlled study (2001) Lupus, 10, pp. 401-404Lesiak, A., Narbutt, J., Kobos, J., Kordek, R., Sysa-Jedrzejowska, A., Norval, M., Systematic administration of chloroquine in discoid lupus erythematosus reduces skin lesions via inhibition of angiogenesis (2009) Clinical and Experimental Dermatology, 34, pp. 570-575Kreuter, A., Gaifullina, R., Tigges, C., Kirschke, J., Altmeyer, P., Gambichler, T., Lupus erythematosus tumidus: response to antimalarial treatment in 36 patients with emphasis on smoking (2009) Archives of Dermatology, 145, pp. 244-248Coatney, G.R., Pitfalls in a discovery: the chronicle of chloroquine (1963) American Journal of Tropical Medicine and Hygiene, 12, pp. 121-128Ikeda, T., Kanazawa, N., Furukawa, F., Hydroxychloroquine administration for Japanese lupus erythematosus in Wakayama: a pilot study (2012) Journal of Dermatology, 39, pp. 531-535Kuhn, A., Ruland, V., Bonsmann, G., Cutaneous lupus erythematosus: update of therapeutic options. Part I (2011) Journal of the American Academy of Dermatology, 65, pp. e179-e193Momose, Y., Arai, S., Eto, H., Kishimoto, M., Okada, M., Experience with the use of hydroxychloroquine for the treatment of lupus erythematosus (2013) Journal of Dermatology, 40, pp. 94-97Arnett, F.C., Edworthy, S.M., Bloch, D.A., McShane, D.J., Fries, J.F., Cooper, N.S., The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis (1988) Arthritis and Rheumatism, 31, pp. 315-324Louzada-Junior, P., Freitas, M.V., Oliveira, R.D., Deghaide, N.H., Conde, R.A., Bertolo, M.B., A majority of Brazilian patients with rheumatoid arthritis HLA-DRB1 alleles carry both the HLA-DRB1 shared epitope and anti-citrunillated peptide antibodies (2008) Brazilian Journal of Medical and Biological Research, 41, pp. 493-499Perricone, C., Ceccarelli, F., Valesini, G., An overview on the genetic of rheumatoid arthritis: a never-ending story (2011) Autoimmunity Reviews, 10, pp. 599-608Takayanagi, H., Inflammatory bone destruction and osteoimmunology (2005) Journal of Periodontal Research, 40, pp. 287-293Takayanagi, H., Oda, H., Yamamoto, S., Kawaguchi, H., Tanaka, S., Nishikawa, T., A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis (1997) Biochemical and Biophysical Research Communications, 240, pp. 279-286Yamada, H., Nakashima, Y., Okazaki, K., Mawatari, T., Fukushi, J.I., Kaibara, N., Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis (2008) Annals of the Rheumatic Diseases, 67, pp. 1299-1304Hashimoto, M., Hirota, K., Yoshitomi, H., Maeda, S., Teradaira, S., Akizuki, S., Complement drives Th17 cell differentiation and triggers autoimmune arthritis (2009) Journal of Experimental Medicine, 207, pp. 1135-1143Loeb, R.F., Clark, W.M., Coatney, G.R., Coggeshall, T., Dieuaide, F.R., Dochez, A.R., Activity of a new antimalarial agent, chloroquine (SN 7618) (1946) Journal of the American Medical Association, 130, p. 1069Korn, T., Bettelli, E., Oukka, M., Kuchroo, V.K., IL-17 and Th17 Cells (2009) Annual Review of Immunology, 27, pp. 485-517Felson, D.T., Anderson, J.J., Meenan, R.F., The comparative efficacy and toxicity of second-line drugs in rheumatoid arthritis. Results of two metaanalyses (1990) Arthritis and Rheumatism, 33, pp. 1449-1461Scott, D.L., Dawes, P.T., Tunn, E., Fowler, P.D., Shadforth, M.F., Fisher, J., Combination therapy with gold and hydroxychloroquine in rheumatoid arthritis: a prospective, randomized, placebo-controlled study (1989) British Journal of Rheumatology, 28, pp. 128-133McCarty, D.J., Carrera, G.F., Intractable rheumatoid arthritis. Treatment with combined cyclophosphamide, azathioprine, and hydroxychloroquine (1982) JAMA: Journal of the American Medical Association, 248, pp. 1718-1723Bunch, T.W., O'Duffy, J.D., Tompkins, R.B., O'Fallon, W.M., Controlled trial of hydroxychloroquine and D-penicillamine singly and in combination in the treatment of rheumatoid arthritis (1984) Arthritis and Rheumatism, 27, pp. 267-276Gibson, T., Emery, P., Armstrong, R.D., Crisp, A.J., Combined, P.G.S., D-penicillamine and chloroquine treatment of rheumatoid arthritis - a comparative study (1987) British Journal of Rheumatology, 26, pp. 279-284Thome, R., Moraes, A.S., Bombeiro, A.L., Farias, A.D., Francelin, C., da Costa, T.A., Chloroquine treatment enhances regulatory T cells and reduces the severity of experimental autoimmune encephalomyelitis (2013) PLoS ONE, 8, pp. e65913Schultz, K.R., Gilman, A.L., The lysosomotropic amines, chloroquine and hydroxychloroquine: a potentially novel therapy for graft-versus-host disease (1997) Leukemia & Lymphoma, 24, pp. 201-210Schultz, K.R., Su, W.N., Hsiao, C.C., Doho, G., Jevon, G., Bader, S., Chloroquine prevention of murine MHC-disparate acute graft-versus-host disease correlates with inhibition of splenic response to CpG oligodeoxynucleotides and alterations in T-cell cytokine production (2002) Biology of Blood and Marrow Transplantation, 8, pp. 648-655Gilman, A.L., Beams, F., Tefft, M., Mazumder, A., The effect of hydroxychloroquine on alloreactivity and its potential use for graft-versus-host disease (1996) Bone Marrow Transplantation, 17, pp. 1069-1075Harinasuta, T., Suntharasamai, P., Viravan, C., Chloroquine-resistant falciparum malaria in Thailand (1965) Lancet, 2, pp. 657-660Gilman, A.L., Chan, K.W., Mogul, A., Morris, C., Goldman, F.D., Boyer, M., Hydroxychloroquine for the treatment of chronic graft-versus-host disease (2000) Biology of Blood and Marrow Transplantation, 6, pp. 327-334Schultz, K.R., Bader, S., Paquet, J., Li, W., Chloroquine treatment affects T-cell priming to minor histocompatibility antigens and graft-versus-host disease (1995) Blood, 86, pp. 4344-4352Hobbs, H.E., Sorsby, A., Freedman, A., Retinopathy following chloroquine therapy (1959) Lancet, 2, pp. 478-480Madalena, B.V., Oshima, A., Serracarbassa, P.D., Amsler grid and visual field on screening for chloroquine retinopathy (2012) Arquivos brasileiros de oftalmologia, 75, pp. 170-173Levy, G.D., Incidence of hydroxychloroquine retinopathy in 1,207 patients in a large multicenter outpatient practice (1997) Arthritis and Rheumatism, 40, pp. 1482-1486Marmor, M.F., Kellner, U., Lai, T.Y., Lyons, J.S., Meiler, W.F., Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2011) Ophthalmology, 118, pp. 415-422Marmor, M.F., Carr, R.E., Easterbrook, M., Farjo, A.A., Mieler, W.F., Recommendations on screening for chloroquine and hydroxychloroquine retinopathy: a report by the American Academy of Ophthalmology (2002) Ophthalmology, 109, pp. 1377-1382Rossi, P., Fossaluzza, V., Gonano, L., Localized scleroderma evolving into systemic sclerosis (1985) Journal of Rheumatology, 12, pp. 629-630Raines, M.F., Bhargava, S.K., Rosen, E.S., The blood-retinal barrier in chSidhu, A.B., Verdier-Pinard, D., Fidock, D.A., Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations (2002) Science, 298, pp. 210-213Kublin, J.G., Cortese, J.F., Njunju, E.M., Mukadam, R.A., Wirima, J.J., Kazembe, P.N., Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi (2003) Journal of Infectious Diseases, 187, pp. 1870-1875Mita, T., Kaneko, A., Lum, J.K., Bwijo, B., Takechi, M., Zungu, I.L., Recovery of chloroquine sensitivity and low prevalence of the Plasmodium falciparum chloroquine resistance transporter gene mutation K76T following the discontinuance of chloroquine use in Malawi (2003) American Journal of Tropical Medicine and Hygiene, 68, pp. 413-415Mwai, L., Ochong, E., Abdirahman, A., Kiara, S.M., Ward, S., Kokwaro, G., Chloroquine resistance before and after its withdrawal in Kenya (2009) Malaria Journal, 8, p. 106Laufer, M.K., Thesing, P.C., Eddington, N.D., Masonga, R., Dzinjalamala, F.K., Takala, S.L., Return of chloroquine antimalarial efficacy in Malawi (2006) The New England Journal of Medicine, 355, pp. 1959-1966Ndiaye, M., Faye, B., Tine, R., Ndiaye, J.L., Lo, A., Abiola, A., Assessment of the molecular marker of Plasmodium falciparum chloroquine resistance (Pfcrt) in Senegal after several years of chloroquine withdrawal (2012) American Journal of Tropical Medicine and Hygiene, 87, pp. 640-645Wurtz, N., Fall, B., Pascual, A., Diawara, S., Sow, K., Baret, E., Prevalence of molecular markers of Plasmodium falciparum drug resistance in Dakar, Senegal (2012) Malaria Journal, 11, p. 197Gharbi, M., Flegg, J.A., Hubert, V., Kendjo, E., Metcalf, J.E., Bertaux, L., Longitudinal study assessing the return of chloroquine susceptibility of Plasmodium falciparum in isolates from travellers returning from West and Central Africa, 2000-2011 (2013) Malaria Journal, 12, p. 35Baird, J.K., Resistance to therapies for infection by Plasmodium vivax (2009) Clinical Microbiology Reviews, 22, pp. 508-534Rieckmann, K.H., Davis, D.R., Hutton, D.C., Plasmodium vivax resistance to chloroquine (1989) Lancet, 2, pp. 1183-1184Castillo, C.M., Osorio, L.E., Palma, G.I., Assessment of therapeutic response of Plasmodium vivax and Plasmodium falciparum to chloroquine in a Malaria transmission free area in Colombia (2002) Memorias do Instituto Oswaldo Cruz, 97, pp. 559-562Ruebush, T.K., Zegarra, J., Cairo, J., Andersen, E.M., Green, M., Pillai, D.R., Chloroquine-resistant Plasmodium vivax malaria in Peru (2003) American Journal of Tropical Medicine and Hygiene, 69, pp. 548-552Soto, J., Toledo, J., Gutierrez, P., Luzz, M., Llinas, N., Cedeno, N., Plasmodium vivax clinically resistant to chloroquine in Colombia (2001) American Journal of Tropical Medicine and Hygiene, 65, pp. 90-93Sumawinata, I.W., Bernadeta Leksana, B., Sutamihardja, A., Purnomo Subianto, B., Very high risk of therapeutic failure with chloroquine for uncomplicated Plasmodium falciparum and P. vivax malaria in Indonesian Papua (2003) American Journal of Tropical Medicine and Hygiene, 68, pp. 416-420Ratcliff, A., Siswantoro, H., Kenangalem, E., Wuwung, M., Brockman, A., Edstein, M.D., Therapeutic response of multidrug-resistant Plasmodium falciparum and P. vivax to chloroquine and sulfadoxine-pyrimethamine in southern Papua, Indonesia (2007) Transactions of the Royal Society of Tropical Medicine and Hygiene, 101, pp. 351-359Tjitra, E., Anstey, N.M., Sugiarto, P., Warikar, N., Kenangalem, E., Karyana, M., Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia (2008) PLoS Medicine, 5, pp. e128Bray, P.G., Hawley, S.R., Mungthin, M., Ward, S.A., Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum (1996) Molecular Pharmacology, 50, pp. 1559-1566Slater, A.F., Swiggard, W.J., Orton, B.R., Flitter, W.D., Goldberg, D.E., Cerami, A., An iron-carboxylate bond links the heme units of malaria pigment (1991) Proceedings of the National Academy of Sciences of the United States of America, 88, pp. 325-329Bray, P.G., Janneh, O., Raynes, K.J., Mungthin, M., Ginsburg, H., Ward, S.A., Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in Plasmodium falciparum (1999) Journal of Cell Biology, 145, pp. 363-376Bray, P.G., Mungthin, M., Ridley, R.G., Ward, S.A., Access to hematin: the basis of chloroquine resistance (1998) Molecular Pharmacology, 54, pp. 170-179Pagola, S., Stephens, P.W., Bohle, D.S., Kosar, A.D., Madsen, S.K., The structure of malaria pigment beta-haematin (2000) Nature, 404, pp. 307-310Sullivan, D.J., Gluzman, I.Y., Russell, D.G., Goldberg, D.E., On the molecular mechanism of chloroquine's antimalarial action (1996) Proceedings of the National Academy of Sciences of the United States of America, 93, pp. 11865-11870Sullivan, D.J., Matile, H., Ridley, R.G., Goldberg, D.E., A common mechanism for blockade of heme polymerization by antimalarial quinolines (1998) Journal of Biological Chemistry, 273, pp. 31103-31107Fitch, C.D., Chevli, R., Banyal, H.S., Phillips, G., Pfaller, M.A., Krogstad, D.J., Lysis of Plasmodium falciparum by ferriprotoporphyrin IX and a chloroquine-ferriprotoporphyrin IX complex (1982) Antimicrobial Agents and Chemotherapy, 21, pp. 819-822Krogstad, D.J., Schlesinger, P.H., A perspective on antimalarial action: effects of weak bases on Plasmodium falciparum (1986) Biochemical Pharmacology, 35, pp. 547-552Krogstad, D.J., Schlesinger, P.H., Gluzman, I.Y., Antimalarials increase vesicle pH in Plasmodium falciparum (1985) Journal of Cell Biology, 101, pp. 2302-2309Wunsch, S., Sanchez, C.P., Gekle, M., Grosse-Wortmann, L., Wiesner, J., Lanzer, M., Differential stimulation of the Na+/H+ exchanger determines chloroquine uptake in Plasmodium falciparum (1998) Journal of Cell Biology, 140, pp. 335-345Sanchez, C.P., Wunsch, S., Lanzer, M., Identification of a chloroquine importer in Plasmodium falciparum. Differences in import kinetics are genetically linked with the chloroquine-resistant phenotype (1997) Journal of Biological Chemistry, 272, pp. 2652-2658Fitch, C.D., Chloroquine resistance in malaria: a deficiency of chloroquine binding (1969) Proceedings of the National Academy of Sciences of the United States of America, 64, pp. 1181-1187Krogstad, D.J., Gluzman, I.Y., Kyle, D.E., Oduola, A.M., Martin, S.K., Milhous, W.K., Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance (1987) Science, 238, pp. 1283-1285Fidock, D.A., Nomura, T., Talley, A.K., Cooper, R.A., Dzekunov, S.M., Ferdig, M.T., Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance (2000) Molecula

    Antibody Recognition Of Plasmodium Falciparum Infected Red Blood Cells By Symptomatic And Asymptomatic Individuals In The Brazilian Amazon

    No full text
    In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms.1095598607Albrecht, L., Castiñeiras, C., Carvalho, B.O., Ladeia-Andrade, S., da Silva, N.S., Hoffmann, E.H.E., dalla Martha, R.C., Wunderlich, G., The South American Plasmodium falciparum var gene repertoire is limited, highly shared and possibly lacks several antigenic types (2010) Gene, 453, pp. 37-44Albrecht, L., Merino, E.F., Hoffmann, E.H.E., Ferreira, M.U., Ferreira, R.G.M., Osakabe, A.L., dalla Martha, R.C., Wunderlich, G., Extense variant gene family repertoire overlap in western Amazon Plasmodium falciparum isolates (2006) Mol Biochem Parasitol, 150, pp. 157-165Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Res, 25, pp. 3389-3402Alves, F.P., Durlacher, R.R., Menezes, M.J., Krieger, H., Silva, L.H., Camargo, E.P., High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations (2002) Am J Trop Med Hyg, 66, pp. 641-648Anderson, T.J., Su, X.Z., Bockarie, M., Lagog, M., Day, K.P., Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples (1999) Parasitology, 119, pp. 113-125Andrews, K.T., Adams, Y., Viebig, N.K., Lanzer, M., Schwartz-Albiez, R., Adherence of Plasmodium falciparum infected erythrocytes to CHO-745 cells and inhibition of binding by protein A in the presence of human serum (2005) Int J Parasitol, 35, pp. 1127-1134Avril, M., Tripathi, A.K., Brazier, A.J., Andisi, C., Janes, J.H., Soma, V.L., Sullivan, D.J., Smith, J.D., A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells (2012) Proc Natl Acad Sci USA, 109, pp. 1782-1790Baruch, D.I., Pasloske, B.L., Singh, H.B., Bi, X., Ma, X.C., Feldman, M., Taraschi, T.F., Howard, R.J., Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes (1995) Cell, 82, pp. 77-87Bengtsson, A., Joergensen, L., Rask, T.S., Olsen, R.W., Andersen, M.A., Turner, L., Theander, T.G., Jensen, A.T.R., A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies (2013) J Immunol, 190, pp. 240-249Bull, P.C., Berriman, M., Kyes, S., Quail, M.A., Hall, N., Kortok, M.M., Marsh, K., Newbold, C.I., Plasmodium falciparum variant surface antigen expression patterns during malaria (2005) PLoS Pathog, 1, pp. e26Bull, P.C., Kyes, S., Buckee, C.O., Montgomery, J., Kortok, M.M., Newbold, C.I., Marsh, K., An approach to classifying sequence tags sampled from Plasmodium falciparum var genes (2007) Mol Biochem Parasitol, 154, pp. 98-102Bull, P.C., Lowe, B.S., Kortok, M., Molyneux, C.S., Newbold, C.I., Marsh, K., Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria (1998) Nat Med, 4, pp. 358-360Chan, J.-A., Howell, K.B., Reiling, L., Ataide, R., Mackintosh, C.L., Fowkes, F.J.I., Petter, M., Beeson, J.G., Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity (2012) J Clin Invest, 122, pp. 3227-3238Claessens, A., Adams, Y., Ghumra, A., Lindergard, G., Buchan, C.C., Andisi, C., Bull, P.C., Rowe, J.A., A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells (2012) Proc Natl Acad Sci USA, 109, pp. 1772-1781Crompton, P.D., Kayala, M.A., Traore, B., Kayentao, K., Ongoiba, A., Weiss, G.E., Molina, D.M., Pierce, S.K., A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray (2010) Proc Natl Acad Sci USA, 107, pp. 6958-6963Freitas-Júnior, L.H., Bottius, E., Pirrit, L.A., Deitsch, K.W., Scheidig, C., Guinet, F., Nehrbass, U., Scherf, A., Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum (2000) Nature, 407, pp. 1018-1022Golnitz, U., Albrecht, L., Wunderlich, G., Var transcription profiling of Plasmodium falciparum 3D7: Assignment of cytoadherent phenotypes to dominant transcripts (2008) Malar J, 7, p. 14Guizetti, J., Scherf, A., Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum (2013) Cell Microbiol, 15, pp. 718-726Hasler, T., Albrecht, G.R., van Schravendijk, M.R., Aguiar, J.C., Morehead, K.E., Pasloske, B.L., Ma, C., Howard, R.J., An improved microassay for Plasmodium falciparum cytoadherence using stable transformants of Chinese hamster ovary cells expressing CD36 or intercellular adhesion molecule-1 (1993) Am J Trop Med Hyg, 48, pp. 332-347Hviid, L., Naturally acquired immunity to Plasmodium falcipa-rum malaria in Africa (2005) Acta Trop, 95, pp. 270-275Joergensen, L., Bengtsson, D.C., Bengtsson, A., Ronander, E., Berger, S.S., Turner, L., Dalgaard, M.B., Jensen, A.T.R., Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1 (2010) PLoS Pathog, 6, pp. e1001083Kyes, S.A., Christodoulou, Z., Raza, A., Horrocks, P., Pinches, R., Rowe, J.A., Newbold, C.I., A well-conserved Plasmodium falciparum var gene shows an unusual stage-specific transcript pattern (2003) Mol Microbiol, 48, pp. 1339-1348Lavstsen, T., Magistrado, P., Hermsen, C.C., Salanti, A., Jensen, A.T.R., Sauerwein, R., Hviid, L., Staalsoe, T., Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans (2005) Malar J 4, p. 21Lavstsen, T., Salanti, A., Jensen, A.T.R., Arnot, D.E., Theander, T.G., Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions (2003) Malar J, 2, p. 27Lavstsen, T., Turner, L., Saguti, F., Magistrado, P., Rask, T.S., Jespersen, J.S., Wang, C.W., Theander, T.G., PNAS Plus: Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children (2012) Proc Natl Acad Sci USA, 109, pp. e1791-1800Leech, J.H., Barnwell, J.W., Miller, L.H., Howard, R.J., Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes (1984) J Exp Med, 159, pp. 1567-1575Lelievre, J., Berry, A., Benoit-Vical, F., An alternative method for Plasmodium culture synchronization (2005) Exp Parasitol, 109, pp. 195-197Maier, A.G., Rug, M., O'Neill, M.T., Beeson, J.G., Marti, M., Reeder, J., Cowman, A.F., Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface (2007) Blood, 109, pp. 1289-1297Marsh, K., Kinyanjui, S., Immune effector mechanisms in malaria (2006) Parasite Immunol, 28, pp. 51-60Medeiros, M.M., Fotoran, W.L., dalla Martha, R.C., Katsuragawa, T.H., da Silva, L.H.P., Wunderlich, G., Natural antibody response to Plasmodium falciparum merozoite antigens MSP5, MSP9 and EBA175 is associated to clinical protection in the Brazilian Amazon (2013) BMC Infect Dis, 13, p. 608Moll, K., Ljungström, I., Perlmann, H., Scherf, A., Wahlgren, M., (2008) Methods In Malaria Research, p. 330. , 5th ed., MR4/ATCC, Manassas/BioMalPar, ParisOchola, L.B., Siddondo, B.R., Ocholla, H., Nkya, S., Kimani, E.N., Williams, T.N., Makale, J.O., Craig, A.G., Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome (2011) PLoS ONE, 6, pp. e14741Oleinikov, A.V., Amos, E., Frye, I.T., Rossnagle, E., Mutabingwa, T.K., Fried, M., Duffy, P.E., High throughput functional assays of the variant antigen PfEMP1 reveal a single domain in the 3D7 Plasmodium falciparum genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies (2009) PLoS Pathog, 5, pp. e1000386Oliveira-Ferreira, J., Lacerda, M.V., Brasil, P., Ladislau, J.L., Tauil, P.L., Daniel-Ribeiro, C.T., Malaria in Brazil: An overview (2010) Malar J, 9, p. 115Pasternak, N.D., Dzikowski, R., PfEMP1: An antigen that plays a key role in the pathogenicity and immune evasion of the malaria parasite Plasmodium falciparum (2009) Int J Biochem Cell Biol, 41, pp. 1463-1466Portugal, S., Pierce, S.K., Crompton, P.D., Young lives lost as B cells falter: What we are learning about antibody responses in malaria (2013) J Immunol, 190, pp. 3039-3046Rask, T.S., Hansen, D.A., Theander, T.G., Pedersen, A.G., Lavstsen, T., Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes-divide and conquer (2010) PLoS Comput Biol, 6, pp. e1000933Salanti, A., Staalsoe, T., Lavstsen, T., Jensen, A.T.R., Sowa, M.P.K., Arnot, D.E., Hviid, L., Theander, T.G., Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria (2003) Mol Microbiol, 49, pp. 179-191Scherf, A., Hernandez-Rivas, R., Buffet, P., Bottius, E., Benatar, C., Pouvelle, B., Gysin, J., Lanzer, M., Antigenic variation in malaria: In situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum (1998) EMBO J, 17, pp. 5418-5426Segurado, A.A., di Santi, S.M., Shiroma, M., In vivo and in vitro Plasmodium falciparum resistance to chloroquine, amodiaquine and quinine in the Brazilian Amazon (1997) Rev Inst Med Trop Sao Paulo, 39, pp. 85-90Su, X.Z., Heatwole, V.M., Wertheimer, S.P., Guinet, F., Herrfeldt, J.A., Peterson, D.S., Ravetch, J.A., Wellems, T.E., The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes (1995) Cell, 82, pp. 89-100Trager, W., Jensen, J.B., Human malaria parasites in continuous culture (1976) Science, 193, pp. 673-675Turner, G.D., Morrison, H., Jones, M., Davis, T.M., Looareesuwan, S., Buley, I.D., Gatter, K.C., Nagachinta, B., An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration (1994) Am J Pathol, 145, pp. 1057-1069Turner, L., Lavstsen, T., Berger, S.S., Wang, C.W., Petersen, J.E.V., Avril, M., Brazier, A.J., Theander, T.G., Severe malaria is associated with parasite binding to endothelial protein C receptor (2013) Nature, 498, pp. 502-505Tutterrow, Y.L., Avril, M., Singh, K., Long, C.A., Leke, R.J., Sama, G., Salanti, A., Taylor, D.W., High levels of antibodies to multiple domains and strains of VAR2CSA correlate with the absence of placental malaria in Cameroonian women living in an area of high Plasmodium falciparum transmission (2012) Infect Immun, 80, pp. 1479-1490Vaughan, A.M., Kappe, S.H.I., Malaria vaccine development: Persistent challenges (2012) Curr Opin Immunol, 24, pp. 324-331Voss, T.S., Healer, J., Marty, A.J., Duffy, M.F., Thompson, J.K., Beeson, J.G., Reeder, J.C., Cowman, A.F., A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria (2006) Nature, 439, pp. 1004-1008Walliker, D., Quakyi, I.A., Wellems, T.E., McCutchan, T.F., Szarfman, A., London, W.T., Corcoran, L.M., Carter, R., Genetic analysis of the human malaria parasite Plasmodium falciparum (1987) Science, 236, pp. 1661-1666Warimwe, G.M., Keane, T.M., Fegan, G., Musyoki, J.N., Newton, C.R.J.C., Pain, A., Berriman, M., Bull, P.C., Plasmodium falciparum var gene expression is modified by host immunity (2009) Proc Natl Acad Sci USA, 106, pp. 21801-21806Weiss, G.E., Traore, B., Kayentao, K., Ongoiba, A., Doumbo, S., Doumtabe, D., Kone, Y., Crompton, P.D., The Plasmodium falciparum-specific human memory B cell compartment expands gradually with repeated malaria infections (2010) PLoS Pathog, 6, pp. e1000912(2011), www.who.int/malaria/world_malaria_report_2011/en/, WHO-World Health Organization, World malaria report 2011. Available from(2013), www.who.int/malaria/publications/world_malaria_report_2013/en/, WHO-World Health Organization, World Malaria Report 2013. Available fro

    Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands

    Get PDF
    Adaptation Pathways is a decision support tool designed to create adaptation policies under different climate change scenarios. This tool has been used successfully in several sectors and contexts such as coastal and river adaptation, urban heat waves, floods and rural livelihoods but its use in natural resource management, has faced several challenges and limitations. In the sector of agroforestry its use has seldom been done or documented and one of the reasons for this may due to some of its specific challenges. In this study, these challenges were addressed when using the Adaptation Pathways for the adaptation planning of three case studies in the semi-arid Alentejo region, a Mediterranean dryland of southern Portugal. This tool was integrated in a participatory approach combined with the Scenario Workshop method, to plan the adaptation of the agriculture and forestry sector of one municipality (Mértola) and two agroforestry farms (221 ha and 1000 ha). The methodology included, for each case study, 20 interviews, two workshops, literature review, expert analysis and the use of indicators of efficacy of adaptation measures, to define tipping points. The adaptation process and the resulting adaptation plans were evaluated by questionnaire and expert review. This combination of methods has supported the choice of effective adaptation measures for the case studies and when combined with several adaptation pathways and a landscape approach it supported the creation of integrated climate change adaptation plans that are now in implementation. We discuss how this combination of methods deals with limitation to Adaptation Pathways identified in the literature, conclude that the method was able to create adaptation plans that are now under implementation and present avenues for future research.info:eu-repo/semantics/publishedVersio

    Amazonian Plant Natural Products: Perspectives For Discovery Of New Antimalarial Drug Leads

    No full text
    Plasmodium falciparum and P. vivax malaria parasites are now resistant, or showing signs of resistance, to most drugs used in therapy. Novel chemical entities that exhibit new mechanisms of antiplasmodial action are needed. New antimalarials that block transmission of Plasmodium spp. from humans to Anopheles mosquito vectors are key to malaria eradication efforts. Although P. vivax causes a considerable number of malaria cases, its importance has for long been neglected. Vivax malaria can cause severe manifestations and death; hence there is a need for P. vivax-directed research. Plants used in traditional medicine, namely Artemisia annua and Cinchona spp. are the sources of the antimalarial natural products artemisinin and quinine, respectively. Based on these compounds, semi-synthetic artemisinin-derivatives and synthetic quinoline antimalarials have been developed and are the most important drugs in the current therapeutic arsenal for combating malaria. In the Amazon region, where P. vivax predominates, there is a local tradition of using plant-derived preparations to treat malaria. Here, we review the current P. falciparum and P. vivax drug-sensitivity assays, focusing on challenges and perspectives of drug discovery for P. vivax, including tests against hypnozoites. We also present the latest findings of our group and others on the antiplasmodial and antimalarial chemical components from Amazonian plants that may be potential drug leads against malaria. © 2013 by the authors; licensee MDPI, Basel, Switzerland.18892199240A research agenda for malaria eradication: Drugs (2011) PLoS Med., 8, pp. e1000402. , malERA Consultative Group on DrugsWhite, N.J., Counter perspective: Artemisinin resistance: Facts, fears, and fables (2012) Am. J. Trop. Med. Hyg., 87, p. 785Phyo, A.P., Nkhoma, S., Stepniewska, K., Ashley, E.A., Nair, S., McGready, R., Ler Moo, C., Lwin, K.M., Emergence of artemisinin-resistant malaria on the western border of Thailand: A longitudinal study (2012) Lancet, 379, pp. 1960-1966Milliken, W., (1997) Plants for Malaria, Plants for Fever: Medicinal Species in Latin America, A Bibliographic Survey, p. 116. , Royal Botanic Gardens, Kew: Richmond, VA, USARuiz, L., Ruiz, L., Maco, M., Cobos, M., Gutierrez-Choquevilca, A.L., Roumy, V., Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria (2011) J. Ethnopharmacol., 133, pp. 917-921Vigneron, M., Deparis, X., Deharo, E., Bourdy, G., Antimalarial remedies in French Guiana: A knowledge attitudes and practices study (2005) J. Ethnopharmacol., 98, pp. 351-360Bero, J., Quetin-Leclercq, J., Natural products published in 2009 from plants traditionally used to treat malaria (2011) Planta Med., 77, pp. 631-640Deharo, E., Ginsburg, H., Analysis of additivity and synergism in the anti-plasmodial effect of purified compounds from plant extracts (2011) Malar. J., 10 (SUPPL. 1), pp. S5Andrade-Neto, V.F., Brandao, M.G., Nogueira, F., Rosario, V.E., Krettli, A.U., Ampelozyziphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria in the Amazon Region, hampers the development of Plasmodium berghei sporozoites (2008) Int. J. Parasitol., 38, pp. 1505-1511(2010) Global Report on Antimalarial Drug Efficacy and Drug Resistance: 2000-2010, p. 115. , World Health OrganizationWorld Health Organization: Geneva, SwitzerlandYoung, M.D., Moore, D.V., Chloroquine resistance in Plasmodium falciparum (1961) Am. J. Trop. Med. Hyg., 10, pp. 317-320Harinasuta, T., Migasen, S., Boonag, D., (1962) Chloroquine Resistance in Plasmodium Falciparum in Thailand, , UNESCO First Regional Symposium on Scientific Knowledge of Tropical Parasites: Singapore University, SingaporePeters, W., (1987) Chemotherapy and Drug Resistance in Malaria, , 2nd ed.Academic: London, UKRoper, C., Pearce, R., Nair, S., Sharp, B., Nosten, F., Anderson, T., Intercontinental spread of pyrimethamine-resistant malaria (2004) Science, 305, p. 1124Enserink, M., Combating malaria. Malaria treatment: ACT two (2007) Science, 318, pp. 560-563(2006) Guidelines for the Treatment of Malaria, p. 253. , World Health Organization. Roll Back Malaria Dept.World Health Organization: Geneva, SwitzerlandDa Mata, A.A., (2003) Flora Médica Brasiliense, , Valer Editora: Manaus, BrazilElisabetsky, E., Shanley, P., Ethnopharmacology in the Brazilian Amazon (1994) Pharmacol. Therap., 64, pp. 201-214Rodrigues, E., Plants and animals utilized as medicines in the Jau National Park (JNP), Brazilian Amazon (2006) Phytother. Res., 20, pp. 378-391Santos, J.F., Pagani, E., Ramos, J., Rodrigues, E., Observations on the therapeutic practices of riverine communities of the Unini River, AM, Brazil (2012) J. Ethnopharmacol., 142, pp. 503-515Suffredini, I.B., Paciencia, M.L., Varella, A.D., Younes, R.N., Antibacterial activity of Brazilian Amazon plant extracts (2006) Braz. J. Infect. Dis., 10, pp. 400-402Carneiro, A.L., Teixeira, M.F., Oliveira, V.M., Fernandes, O.C., Cauper, G.S., Pohlit, A.M., Screening of Amazonian plants from the Adolpho Ducke forest reserve, Manaus, state of Amazonas, Brazil, for antimicrobial activity (2008) Mem. Inst. Oswaldo Cruz, 103, pp. 31-38Pohlit, A.M., Lopes, N.P., Gama, R.A., Tadei, W.P., Neto, V.F., Patent literature on mosquito repellent inventions which contain plant essential oils-A review (2011) Planta Med., 77, pp. 598-617Pohlit, A.M., Rezende, A.R., Lopes Baldin, E.L., Lopes, N.P., Neto, V.F., Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases-A review (2011) Planta Med., 77, pp. 618-630Schmidt, T.J., Khalid, S.A., Romanha, A.J., Alves, T.M., Biavatti, M.W., Brun, R., Da Costa, F.B., De Lacerda, M.V., The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-part I (2012) Curr. Med. Chem., 19, pp. 2128-2175Achan, J., Talisuna, A.O., Erhart, A., Yeka, A., Tibenderana, J.K., Baliraine, F.N., Rosenthal, P.J., D'Alessandro, U., Quinine an old anti-malarial drug in a modern world: Role in the treatment of malaria (2011) Malar. J., 10, p. 144Bray, P.G., Ward, S.A., O'Neill, P.M., Quinolines and artemisinin: Chemistry, biology and history (2005) Curr. Top. Microbiol. Immunol., 295, pp. 3-38Pohlit, A.M., Jabor, V.A.P., Amorim, R.C.N., Costa Silva, E.E.C., Lopes, N.P., LC-ESI-MS determination of quassinoids Isobrucein B and neosergeolide in picrolemma sprucei stem infusions (2009) J. Braz. Chem. Soc., 20, pp. 1065-1070De Andrade-Neto, V.F., Pohlit, A.M., Pinto, A.C., Silva, E.C., Nogueira, K.L., Melo, M.R., Henrique, M.C., Costa, M.R., In vitro inhibition of plasmodium falciparum by substances isolated from Amazonian antimalarial plants (2007) Mem. Inst. Oswaldo Cruz, 102, pp. 359-365Pinto, A.C., Chaves, F.C., Dos Santos, P.A., Nunez, C.V., Tadei, W.P., Pohlit, A.M., Piper peltatum: Biomass and 4-nerolidylcatechol production (2010) Planta Med., 76, pp. 1473-1476Pinto, P.S., (2006) Estudo Químico e Atividade Biológica de Frações Do Extrato Etanólico da Raiz de Cassia Spruceana Benth. (Leguminosae: Caesalpinioideae), , M.Sc. Thesis, Universidade Federal do Amazonas, Manaus, BrazilHenrique, M.C., Nunomura, S.M., Pohlit, A.M., Indole alkaloids from the bark of Aspidosperma vargasii and A desmanthum (2010) Quim. Nova, 33, pp. 284-287Rocha Silva, E.L.F., Montoia, A., Amorim, R.C., Melo, M.R., Henrique, M.C., Nunomura, S.M., Costa, M.R., Dantas, G., Comparative in vitro and in vivo antimalarial activity of the indole alkaloids ellipticine, olivacine, cryptolepine and a synthetic cryptolepine analog (2012) Phytomed. Int. J. Phytother. Phytopharmacol., 20, pp. 71-76Dos Santos Torres, Z.E., Silveira, E.R., Rocha, E.S.L.F., Lima, E.S., De Vasconcellos, M.C., De Andrade Uchoa, D.E., Filho, R.B., Pohlit, A.M., Chemical composition of aspidosperma ulei markgr and antiplasmodial activity of selected indole alkaloids (2013) Molecules, 18, pp. 6281-6297Oliveira, A.B., Dolabela, M.F., Póvoa, M.M., Santos, C.A.M., Varotti, F.P., Antimalarial activity of ulein and proof of its action on the Plasmodium falciparum digestive vacuole (2010) Malar. J., , doi:10.1186/1475-2875-9-S2-O9Tanaka, Y., Sakamoto, A., Inoue, T., Yamada, T., Kikuchi, T., Kajimoto, T., Muraoka, O., Kim, H.-S., Andirolides H-P from the flower of andiroba (Carapa guianensis, Meliaceae) (2012) Tetrahedron, 68, pp. 3669-3677Marti, G., Eparvier, V., Moretti, C., Susplugas, S., Prado, S., Grellier, P., Retailleau, P., Litaudon, M., Antiplasmodial benzophenones from the trunk latex of Moronobea coccinea (Clusiaceae) (2009) Phytochemistry, 70, pp. 75-85Pinto, A.C., Silva, L.F., Cavalcanti, B.C., Melo, M.R., Chaves, F.C., Lotufo, L.V., De Moraes, M.O., Pessoa, C.O., New antimalarial and cytotoxic 4-nerolidylcatechol derivatives (2009) Eur. J. Med. Chem., 44, pp. 2731-2735Bertani, S., Houel, E., Stien, D., Chevolot, L., Jullian, V., Garavito, G., Bourdy, G., Deharo, E., Simalikalactone D is responsible for the antimalarial properties of an Amazonian traditional remedy made with Quassia amara L. (Simaroubaceae) (2006) J. Ethnopharmacol., 108, pp. 155-157Cachet, N., Hoakwie, F., Bertani, S., Bourdy, G., Deharo, E., Stien, D., Houel, E., Chevalley, S., Antimalarial activity of simalikalactone E, a new quassinoid from Quassia amara L. (Simaroubaceae) (2009) Antimicrob. Agents Chemother., 53, pp. 4393-4398Muhammad, I., Bedir, E., Khan, S.I., Tekwani, B.L., Khan, I.A., Takamatsu, S., Pelletier, J., Walker, L.A., A new antimalarial quassinoid from Simaba orinocensis (2004) J. Nat. Prod., 67, pp. 772-777Morais, S.K.R., Silva, S.G., Portela, C.N., Nunomura, S.M., Quignard, E.L.J., Pohlit, A.M., Bioactive dihydroxyfuranonaphthoquinones from the bark of Tabebuia incana A.H. Gentry (Bignoniaceae) and HPLC analysis of commercial pau d'arco and certified T. incana bark infusions (2007) Acta Amaz., 37, pp. 99-102Pérez, H., Diaz, F., Medina, J.D., Chemical investigation and in vitro antimalarial activity of Tabebuia ochracea ssp neochrysantha (1997) Pharm. Biol., 35, pp. 227-235Rocha Silva, E.L.F., Lima, E.S., Vasconcellos, M.C., Aranha, E.S.P., Costa, D.S., Santos, E.V.M., Silva, T.C.M., Alecrim, M.G.C., In vitro and in vivo antimalarial activity and cytotoxicity of extracts, fractions and a substance isolated from the Amazonian plant Tachia grandiflora (Gentianaceae) (2013) Mem. Inst. Oswaldo Cruz, 108, pp. 501-507Pohlit, A.M., Rocha Silva, E.L.F., Henrique, M.C., Montoia, A., Amorim, R.C., Nunomura, S.M., Andrade-Neto, V.F., Antimalarial activity of ellipticine (2012) Phytom. Int. J. Phytother. Phytopharmacol., 19, p. 1049Roumy, V., Fabre, N., Portet, B., Bourdy, G., Acebey, L., Vigor, C., Valentin, A., Moulis, C., Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis (2009) Phytochem., 70, pp. 305-311Jullian, V., Bourdy, G., Georges, S., Maurel, S., Sauvain, M., Validation of use of a traditional antimalarial remedy from French Guiana, Zanthoxylum rhoifolium Lam (2006) J. Ethnopharmacol., 106, pp. 348-352Saraiva Nunomura, R.C., Pinto, A.C., Nunomura, S.M., Pohlit, A.M., Fernandes Amaral, A.C. Chemical constitutents from stems of Simaba guianensis subesp ecaudata (Cronquist) (2012) Quim. Nova, 35, pp. 2153-2158Montoia, A., (2013) Semi-síntese de Derivados da Elipticina e Atividade Antimalárica de Isolados e Infusões de Aspidosperma Vargasii, , M.Sc. Thesis, Universidade Federal do Amazonas, Manaus, BrazilCamargo, M.R.M., (2011) Avaliação da Atividade Antimalárica e Antimicrobiana de Geissospermum Argenteum e Minquartia Guianensis, Coletadas em Roraima, , M.Sc. Thesis, Universidade Federal de Rondônia, BrazilPinto, P.S., Rocha Silva, E.L.F., Amorim, R.C.N., Melo, M.R.S., Nunomura, S.M., Pohlit, A.M.Q.N., Phenolic constituents from the roots of Cassia spruceana Benth. (Fabaceae) (2013) Quim. Nova, , submitted for publishCavalcanti, B.C., Da Costa, P.M., Carvalho, A.A., Rodrigues, F.A., Amorim, R.C., Silva, E.C., Pohlit, A.M., Pessoa, C., Involvement of intrinsic mitochondrial pathway in neosergeolide-induced apoptosis of human HL-60 leukemia cells: The role of mitochondrial permeability transition pore and DNA damage (2012) Pharm. Biol., 50, pp. 980-993Cabral, J.A., McChesney, J.D., Milhous, W.K., A new antimalarial quassinoid from Simaba guianensis (1993) J. Nat. Prod., 56, pp. 1954-1961Passemar, C., Salery, M., Soh, P.N., Linas, M.D., Ahond, A., Poupat, C., Benoit-Vical, F., Indole and aminoimidazole moieties appear as key structural units in antiplasmodial molecules (2011) Phytomed. Int. J. Phytother. Phytopharmacol., 18, pp. 1118-1125Chong, C.R., Sullivan Jr., D.J., Inhibition of heme crystal growth by antimalarials and other compounds: Implications for drug discovery (2003) Biochem. Pharmacol., 66, pp. 2201-2212Rocha, E.S.L.F., Silva Pinto, A.C., Pohlit, A.M., Quignard, E.L., Vieira, P.P., Tadei, W.P., Chaves, F.C., Costa, M.R., In vivo and in vitro antimalarial activity of 4-nerolidylcatechol (2011) Phytother. Res., 25, pp. 1181-1188Silva Lima, E., Silva Pinto, A.C., Nogueira, K.L., Rocha Silva, E.L.F., Oliveira De Almeida, P.D., Carvalho De Vasconcellos, M., Chaves, F.C., Pohlit, A.M., Stability and antioxidant activity of semi-synthetic derivatives of 4-nerolidylcatechols (2012) Molecules, 18, pp. 178-189Mota, M.L., Lobo, L.T., Costa, J.M., Costa, L.S., Rocha, H.A., Rocha Silva, E.L.F., Pohlit, A.M., Neto, V.F., In vitro and in vivo antimalarial activity of essential oils and chemical components from three medicinal plants found in northeastern Brazil (2012) Planta Med., 78, pp. 658-664Baird, J.K., Eliminating malaria - All of them (2010) Lancet, 376, pp. 1883-1885Schrader, F.C., Barho, M., Steiner, I., Ortmann, R., Schlitzer, M., The antimalarial pipeline-An update (2012) Int. J. Med. Microbiol., 302, pp. 165-171Rieckmann, K.H., McNamara, J.V., Frischer, H., Stockert, T.A., Carson, P.E., Powell, R.D., Effects of chloroquine, quinine, and cycloguanil upon the maturation of asexual erythrocytic forms of two strains of Plasmodium falciparum in vitro (1968) Am. J. Trop. Med. Hyg., 17, pp. 661-671Rieckmann, K.H., Campbell, G.H., Sax, L.J., Mrema, J.E., Drug sensitivity of plasmodium falciparum. An in vitro microtechnique (1978) Lancet, 1, pp. 22-23Noedl, H., Wongsrichanalai, C., Wernsdorfer, W.H., Malaria drug-sensitivity testing: New assays, new perspectives (2003) Trends Parasitol., 19, pp. 175-181Trager, W., Jensen, J.B., Human malaria parasites in continuous culture (1976) Science, 193, pp. 673-675Desjardins, R.E., Canfield, C.J., Haynes, J.D., Chulay, J.D., Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique (1979) Antimicrob. Agents Chemother., 16, pp. 710-718Aguiar, A.C., Rocha, E.M., Souza, N.B., Franca, T.C., Krettli, A.U., New approaches in antimalarial drug discovery and development: A review (2012) Mem. Inst. Oswaldo Cruz, 107, pp. 831-845Makler, M.T., Ries, J.M., Williams, J.A., Bancroft, J.E., Piper, R.C., Gibbins, B.L., Hinrichs, D.J., Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity (1993) Am. J. Trop. Med. Hyg., 48, pp. 739-741Druilhe, P., Moreno, A., Blanc, C., Brasseur, P.H., Jacquier, P., A colorimetric in vitro drug sensitivity assay for Plasmodium falciparum based on a highly sensitive double-site lactate dehydrogenase antigen-capture enzyme-linked immunosorbent assay (2001) Am. J. Trop. Med. Hyg., 64, pp. 233-241Noedl, H., Wernsdorfer, W.H., Miller, R.S., Wongsrichanalai, C., Histidine-rich protein II: A novel approach to malaria drug sensitivity testing. Antimicrob (2002) Agents Chemother., 46, pp. 1658-1664Plouffe, D., Brinker, A., McNamara, C., Henson, K., Kato, N., Kuhen, K., Nagle, A., Anderson, P., In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 9059-9064Cervantes, S., Stout, P.E., Prudhomme, J., Engel, S., Bruton, M., Cervantes, M., Carter, D., Aalbersberg, W., High content live cell imaging for the discovery of new antimalarial marine natural products (2012) BMC Infect. Dis., 12, p. 1Van Vianen, P.H., Thaithong, S., Reinders, P.P., Van Engen, A., Van Der Keur, M., Tanke, H.J., Van Der Kaay, H.J., Mons, B., Automated flow cytometric analysis of drug susceptibility of malaria parasites (1990) Am. J. Trop. Med. Hyg., 43, pp. 602-607Saito-Ito, A., Akai, Y., He, S., Kimura, M., Kawabata, M., A rapid, simple and sensitive flow cytometric system for detection of Plasmodium falciparum (2001) Parasitol. Int., 50, pp. 249-257Wilson, D.W., Crabb, B.S., Beeson, J.G., Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays (2010) Malar. J., 9, p. 152Che, P., Cui, L., Kutsch, O., Cui, L., Li, Q., Validating a firefly luciferase-based high-throughput screening assay for antimalarial drug discovery (2012) Assay Drug Dev. Technol., 10, pp. 61-68Cui, L., Miao, J., Wang, J., Li, Q., Cui, L., Plasmodium falciparum: Development of a transgenic line for screening antimalarials using firefly luciferase as the reporter (2008) Exp. Parasitol., 120, pp. 80-87Krettli, A.U., Adebayo, J.O., Krettli, L.G., Testing of natural products and synthetic molecules aiming at new antimalarials (2009) Curr. Drug Targets, 10, pp. 261-270Gething, P.W., Elyazar, I.R., Moyes, C.L., Smith, D.L., Battle, K.E., Guerra, C.A., Patil, A.P., Myers, M.F., A long neglected world malaria map: Plasmodium vivax endemicity in 2010 (2012) PLoS Neglect Trop. Dis., 6, pp. e1814Guerra, C.A., Howes, R.E., Patil, A.P., Gething, P.W., Van Boeckel, T.P., Temperley, W.H., Kabaria, C.W., Elyazar, I.R., The international limits and population at risk of Plasmodium vivax transmission in 2009 (2010) PLoS Negl. Trop. Dis., 4, pp. e774Boyd, M.F., Stratman-Thomas, W.K., Muench, H., The occurrence of gametocytes of Plasmodium vivax during the primary attack (1935) Am. J. Trop. Med. Hyg., 16, pp. 133-138Feachem, R.G., Phillips, A.A., Hwang, J., Cotter, C., Wielgosz, B., Greenwood, B.M., Sabot, O., Ghebreyesus, T.A., Shrinking the malaria map: Progress and prospects (2010) Lancet, 376, pp. 1566-1578Rodriguez, J.C., Uribe, G.A., Araujo, R.M., Narvaez, P.C., Valencia, S.H., Epidemiology and control of malaria in Colombia (2011) Mem. Inst. Oswaldo Cruz, 106, pp. 114-122Gama, B.E., Lacerda, M.V., Daniel-Ribeiro, C.T., Ferreira-Da-Cruz Mde, F., Chemoresistance of Plasmodium falciparum and Plasmodium vivax parasites in Brazil: Consequences on disease morbidity and control (2011) Mem. Inst. Oswaldo Cruz, 106, pp. 159-166Oliveira-Ferreira, J., Lacerda, M.V., Brasil, P., Ladislau, J.L., Tauil, P.L., Daniel-Ribeiro, C.T., Malaria in Brazil: An overview (2010) Malar. J., 9, p. 115(2011) World Malaria Report 2011, p. 246. , World Health OrganizationWorld Health Organization: Geneva, SwitzerlandPrice, R.N., Tjitra, E., Guerra, C.A., Yeung, S., White, N.J., Anstey, N.M., Vivax malaria: Neglected and not benign (2007) Am. J. Trop. Med. Hyg., 77, pp. 79-87Baird, J.K., Neglect of Plasmodium vivax malaria (2007) Trends Parasitol., 23, pp. 533-539Tjitra, E., Anstey, N.M., Sugiarto, P., Warikar, N., Kenangalem, E., Karyana, M., Lampah, D.A., Price, R.N., Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: A prospective study in Papua, Indonesia (2008) PLoS Med., 5, pp. e128Genton, B., D'Acremont, V., Rare, L., Baea, K., Reeder, J.C., Alpers, M.P., Muller, I., Plasmodium vivax and mixed infections are associated with severe malaria in children: A prospective cohort study from Papua New Guinea (2008) PLoS Med., 5, pp. e127Beg, M.A., Sani, N., Mehraj, V., Jafri, W., Khan, M.A., Malik, A., Menezes, E., Smego Jr., R., Comparative features and outcomes of malaria at a tertiary care hospital in Karachi, Pakistan (2008) Int. J. Infect. Dis., 12, pp. 37-42Barcus, M.J., Basri, H., Picarima, H., Manyakori, C., Sekartuti, Elyazar, I., Bangs, M.J., Baird, J.K., Demographic risk factors for severe and fatal vivax and falciparum malaria among hospital admissions in northeastern Indonesian Papua (2007) Am. J. Trop. Med. Hyg., 77, pp. 984-991Lampah, D.A., Yeo, T.W., Hardianto, S.O., Tjitra, E., Kenangalem, E., Sugiarto, P., Price, R.N., Anstey, N.M., Coma associated with microscopy-diagnosed Plasmodium vivax: A prospective study in Papua, Indonesia (2011) PLoS Negl. Trop. Dis., 5, pp. e1032Kochar, D.K., Das, A., Kochar, S.K., Saxena, V., Sirohi, P., Garg, S., Kochar, A., Gupta, V., Severe Plasmodium vivax malaria: A report on serial cases from Bikaner in northwestern India (2009) Am. J. Trop. Med. Hyg., 80, pp. 194-198Kochar, D.K., Saxena, V., Singh, N., Kochar, S.K., Kumar, S.V., Das, A., Plasmodium vivax malaria (2005) Emerg. Infect. Dis., 11, pp. 132-134Tan, L.K., Yacoub, S., Scott, S., Bhagani, S., Jacobs, M., Acute lung injury and other serious complications of Plasmodium vivax malaria (2008) Lancet Infect. Dis., 8, pp. 449-454Bassat, Q., Alonso, P.L., Defying malaria: Fathoming severe Plasmodium vivax disease (2011) Nat. Med., 17, pp. 48-49Anstey, N.M., Russell, B., Yeo, T.W., Price, R.N., The pathophysiology of vivax malaria (2009) Trends Parasitol., 25, pp. 220-227Costa, F.T., Lopes, S.C., Albrecht, L., Ataide, R., Siqueira, A.M., Souza, R.M., Russell, B., Lacerda, M.V., On the pathogenesis of Plasmodium vivax malaria: Perspectives from the Brazilian field (2012) Int. J. Parasitol., 42, pp. 1099-1105Lacerda, M.V., Fragoso, S.C., Alecrim, M.G., Alexandre, M.A., Magalhaes, B.M., Siqueira, A.M., Ferreira, L.C., Ferrer, M., Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: To what extent does this parasite kill? (2012) Clin. Infect. Dis., 55, pp. e67-e74Alexandre, M.A., Ferreira, C.O., Siqueira, A.M., Magalhaes, B.L., Mourao, M.P., Lacerda, M.V., Alecrim, M., Severe Plasmodium vivax mal
    corecore