225 research outputs found

    Mind Perception: Real but Not Artificial Faces Sustain Neural Activity beyond the N170/VPP

    Get PDF
    Faces are visual objects that hold special significance as the icons of other minds. Previous researchers using event-related potentials (ERPs) have found that faces are uniquely associated with an increased N170/vertex positive potential (VPP) and a more sustained frontal positivity. Here, we examined the processing of faces as objects vs. faces as cues to minds by contrasting images of faces possessing minds (human faces), faces lacking minds (doll faces), and non-face objects (i.e., clocks). Although both doll and human faces were associated with an increased N170/VPP from 175–200 ms following stimulus onset, only human faces were associated with a sustained positivity beyond 400 ms. Our data suggest that the N170/VPP reflects the object-based processing of faces, whether of dolls or humans; on the other hand, the later positivity appears to uniquely index the processing of human faces—which are more salient and convey information about identity and the presence of other minds

    How well do computer-generated faces tap face expertise?

    Get PDF
    The use of computer-generated (CG) stimuli in face processing research is proliferating due to the ease with which faces can be generated, standardised and manipulated. However there has been surprisingly little research into whether CG faces are processed in the same way as photographs of real faces. The present study assessed how well CG faces tap face identity expertise by investigating whether two indicators of face expertise are reduced for CG faces when compared to face photographs. These indicators were accuracy for identification of own-race faces and the other-race effect (ORE)-the well-established finding that own-race faces are recognised more accurately than other-race faces. In Experiment 1 Caucasian and Asian participants completed a recognition memory task for own- and other-race real and CG faces. Overall accuracy for own-race faces was dramatically reduced for CG compared to real faces and the ORE was significantly and substantially attenuated for CG faces. Experiment 2 investigated perceptual discrimination for own- and other-race real and CG faces with Caucasian and Asian participants. Here again, accuracy for own-race faces was significantly reduced for CG compared to real faces. However the ORE was not affected by format. Together these results signal that CG faces of the type tested here do not fully tap face expertise. Technological advancement may, in the future, produce CG faces that are equivalent to real photographs. Until then caution is advised when interpreting results obtained using CG faces

    A small and vigorous black hole in the early Universe

    Get PDF
    Several theories have been proposed to describe the formation of black hole seeds in the early Universe and to explain the emergence of very massive black holes observed in the first thousand million years after the Big Bang1–3. Models consider different seeding and accretion scenarios4–7, which require the detection and characterization of black holes in the first few hundred million years after the Big Bang to be validated. Here we present an extensive analysis of the JWST-NIRSpec spectrum of GN-z11, an exceptionally luminous galaxy at z = 10.6, revealing the detection of the [Neiv]λ2423 and CII*λ1335 transitions (typical of active galactic nuclei), as well as semi-forbidden nebular lines tracing gas densities higher than 109 cm−3, typical of the broad line region of active galactic nuclei. These spectral features indicate that GN-z11 hosts an accreting black hole. The spectrum also reveals a deep and blueshifted CIVλ1549 absorption trough, tracing an outflow with velocity 800−1,000 km s−1, probably driven by the active galactic nucleus. Assuming local virial relations, we derive a black hole mass of log(MBH/M⊙)=6.2±0.3, accreting at about five times the Eddington rate. These properties are consistent with both heavy seeds scenarios and scenarios considering intermediate and light seeds experiencing episodic super-Eddington phases. Our finding explains the high luminosity of GN-z11 and can also provide an explanation for its exceptionally high nitrogen abundance

    Western men and Eastern arts: The significance of Eastern martial arts disciplines in British men's narratives of masculinity

    Get PDF
    Previous Western sociological research on Eastern martial arts has identified a tension between ‘traditional’ Eastern forms of practice and ‘modernized’ Western methods of training and competition. In particular, the ‘sportization’ of Eastern styles, where combat-centred arts based upon moral philosophies have transformed more or less into competitive activities following Western models of rationalized sport, has been an important theme. However, it is also suggested that Eastern martial arts hold special significance in the West for their seemingly esoteric nature. In this regard, such martial arts are considered significant because they are not ‘sports’, but rather disciplines, with fairly different connotations for practitioners. Drawing on interview data, this paper explores how Western practitioners of Eastern martial arts articulate this difference, principally by examining the place of martial artistry in British men's narratives of masculinity. Comparing themselves favourably to assumed, typical visions of Western sporting masculinity, such men draw upon the imagined uniqueness of their martial arts to construct a sense of moral superiority over other men. In so doing, they contribute to a rejection of what they believe to be ‘mainstream’ sporting Western masculinity, thus indicating the role that ‘alternative’ visions of physical culture can play in men's active constructions of gender

    A recently quenched galaxy 700 million years after the Big Bang

    Get PDF
    Local and low-redshift (z 1010 M⊙) and relatively old. Here we report a (mini-)quenched galaxy at z = 7.3, when the Universe was only 700 Myr old. The JWST/NIRSpec spectrum is very blue (U–V = 0.16 ± 0.03 mag) but exhibits a Balmer break and no nebular emission lines. The galaxy experienced a short starburst followed by rapid quenching; its stellar mass (4–6 × 108 M⊙) falls in a range that is sensitive to various feedback mechanisms, which can result in perhaps only temporary quenching

    Induction of SCEs and DNA fragmentation in bovine peripheral lymphocytes by in vitro exposure to tolylfluanid-based fungicide

    Get PDF
    The potential for genotoxic and cytotoxic effects of tolylfluanid-based fungicide (50% active agent) was evaluated using sister chromatid exchange (SCE) and proliferation indices (PI) in cultured bovine peripheral lymphocytes. For the detection of possible genetic damage, DNA fragmentation assay was also applied. Bovine lymphocytes cultured for 72 h were treated with the fungicide at the final concentrations of 1.75, 3.5, 8.75, and 17.5 μg/mL for the last 24 and 48 h of culture without S9 metabolic activation, and during the last 2 h of culture with S9 metabolic activation. In the SCE assays no evidence for genotoxic activity of the fungicide was found in treatments of 24 h without and 2 h with S9. After the 24 h exposure to tolylfluanid, a weak decrease in the PI was observed. With the prolonged exposure time (48 h), dose dependence in the increase of SCE frequencies was observed. Moreover, after 48 h exposure slight fragmentation of DNA at the concentrations of 3.5 and 8.75 μg/mL was demonstrated. SCE quantification is the most widely used approach for the assessment of genotoxic/cytogenetic effects of chemical compounds. Positive results in the assay at 48 h exposure indicated a potential of the fungicide to increase frequency of chromosomal damage (replication injuries) that is the confirmation of early effect of exposure

    The JWST Advanced Deep Extragalactic Survey: Discovery of an Extreme Galaxy Overdensity at z = 5.4 with JWST/NIRCam in GOODS-S

    Get PDF
    © 2024 The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We report the discovery of an extreme galaxy overdensity at z=5.4z = 5.4 in the GOODS-S field using JWST/NIRCam imaging from JADES and JEMS alongside JWST/NIRCam wide field slitless spectroscopy from FRESCO. We identified potential members of the overdensity using HST+JWST photometry spanning λ=0.4−5.0 μm\lambda = 0.4-5.0\ \mu\mathrm{m}. These data provide accurate and well-constrained photometric redshifts down to m≈29−30 magm \approx 29-30\,\mathrm{mag}. We subsequently confirmed N=81N = 81 galaxies at 5.2<z<5.55.2 < z < 5.5 using JWST slitless spectroscopy over λ=3.9−5.0 μm\lambda = 3.9-5.0\ \mu\mathrm{m} through a targeted line search for Hα\mathrm{H} \alpha around the best-fit photometric redshift. We verified that N=42N = 42 of these galaxies reside in the field while N=39N = 39 galaxies reside in a density around ∼10\sim 10 times that of a random volume. Stellar populations for these galaxies were inferred from the photometry and used to construct the star-forming main sequence, where protocluster members appeared more massive and exhibited earlier star formation (and thus older stellar populations) when compared to their field galaxy counterparts. We estimate the total halo mass of this large-scale structure to be 12.6≲log10(Mhalo/M⊙)≲12.812.6 \lesssim \mathrm{log}_{10} \left( M_{\mathrm{halo}}/M_{\odot} \right) \lesssim 12.8 using an empirical stellar mass to halo mass relation, which is likely an underestimate as a result of incompleteness. Our discovery demonstrates the power of JWST at constraining dark matter halo assembly and galaxy formation at very early cosmic times.Peer reviewe

    JWST-JADES. Possible Population III signatures at z=10.6 in the halo of GN-z11

    Full text link
    Finding the first generation of stars formed out of pristine gas in the early Universe, known as Population III (PopIII) stars, is one of the most important goals of modern astrophysics. Recent models suggest that PopIII stars may form in pockets of pristine gas in the halo of more evolved galaxies. Here we present NIRSpec-IFU and NIRSpec-MSA observations of the region around GN-z11, an exceptionally luminous galaxy at z=10.6z=10.6, which reveal a >>5σ\sigma detection of a feature consistent with being HeIIλ\lambda1640 emission at the redshift of GN-z11. The very high equivalent width of the putative HeII emission in this clump (170 A), and the lack of metal lines, can be explained in terms of photoionisation by PopIII stars, while photoionisation by PopII stars is inconsistent with the data. It would also indicate that the putative PopIII stars likely have a top-heavy initial mass function (IMF), with an upper cutoff reaching at least 500 M⊙_\odot. The PopIII bolometric luminosity inferred from the HeII line would be ∼2×1010 L⊙\sim 2\times 10^{10}~L_\odot, which (with a top-heavy IMF) would imply a total stellar mass formed in the burst of ∼6×105 M⊙\sim 6\times 10^{5}~M_\odot. We find that photoionisation by the Active Galactic Nucleus (AGN) in GN-z11 cannot account for the HeII luminosity observed in the clump, but can potentially be responsible for additional HeII emission observed closer to GN-z11. We also consider the possibility of in-situ photoionisation by an accreting Direct Collapse Black Hole (DCBH) hosted by the HeII clump; we find that this scenario is less favoured, but it remains a possible alternative interpretation. We also report the detection of a Lyα\alpha halo stemming out of GN-z11 and extending out to ∼\sim2 kpc, as well as resolved, funnel-shaped CIII] emission, likely tracing the ionisation cone of the AGN.Comment: Submitted to A&A, 13 pages, 8 figures; some typos corrected and some minor additional information added to match submitted versio

    The JWST Advanced Deep Extragalactic Survey: Discovery of an Extreme Galaxy Overdensity at z=5.4z = 5.4 with JWST/NIRCam in GOODS-S

    Full text link
    We report the discovery of an extreme galaxy overdensity at z=5.4z = 5.4 in the GOODS-S field using JWST/NIRCam imaging from JADES and JEMS alongside JWST/NIRCam wide field slitless spectroscopy from FRESCO. We identified potential members of the overdensity using HST+JWST photometry spanning λ=0.4−5.0 μm\lambda = 0.4-5.0\ \mu\mathrm{m}. These data provide accurate and well-constrained photometric redshifts down to m≈29−30 magm \approx 29-30\,\mathrm{mag}. We subsequently confirmed N=81N = 81 galaxies at 5.2<z<5.55.2 < z < 5.5 using JWST slitless spectroscopy over λ=3.9−5.0 μm\lambda = 3.9-5.0\ \mu\mathrm{m} through a targeted line search for Hα\mathrm{H} \alpha around the best-fit photometric redshift. We verified that N=42N = 42 of these galaxies reside in the field while N=39N = 39 galaxies reside in a density around ∼10\sim 10 times that of a random volume. Stellar populations for these galaxies were inferred from the photometry and used to construct the star-forming main sequence, where protocluster members appeared more massive and exhibited earlier star formation (and thus older stellar populations) when compared to their field galaxy counterparts. We estimate the total halo mass of this large-scale structure to be 12.6≲log10(Mhalo/M⊙)≲12.812.6 \lesssim \mathrm{log}_{10} \left( M_{\mathrm{halo}}/M_{\odot} \right) \lesssim 12.8 using an empirical stellar mass to halo mass relation, which is likely an underestimate as a result of incompleteness. Our discovery demonstrates the power of JWST at constraining dark matter halo assembly and galaxy formation at very early cosmic times.Comment: Resubmitted to ApJ based on reviewer report; main text has 15 pages, 6 figures and 1 table; appendix has 1 page, 2 figure sets, and 2 table

    Marine temperatures underestimated for past greenhouse climate

    Get PDF
    AbstractUnderstanding the Earth’s climate system during past periods of high atmospheric CO2 is crucial for forecasting climate change under anthropogenically-elevated CO2. The Mesozoic Era is believed to have coincided with a long-term Greenhouse climate, and many of our temperature reconstructions come from stable isotopes of marine biotic calcite, in particular from belemnites, an extinct group of molluscs with carbonate hard-parts. Yet, temperatures reconstructed from the oxygen isotope composition of belemnites are consistently colder than those derived from other temperature proxies, leading to large uncertainties around Mesozoic sea temperatures. Here we apply clumped isotope palaeothermometry to two distinct carbonate phases from exceptionally well-preserved belemnites in order to constrain their living habitat, and improve temperature reconstructions based on stable oxygen isotopes. We show that belemnites precipitated both aragonite and calcite in warm, open ocean surface waters, and demonstrate how previous low estimates of belemnite calcification temperatures has led to widespread underestimation of Mesozoic sea temperatures by ca. 12 °C, raising estimates of some of the lowest temperature estimates for the Jurassic period to values which approach modern mid-latitude sea surface temperatures. Our findings enable accurate recalculation of global Mesozoic belemnite temperatures, and will thus improve our understanding of Greenhouse climate dynamics.</jats:p
    • …
    corecore