3,049 research outputs found

    Mie disdrometer for in situ measurement of drop size distributions

    Get PDF
    Test results are shown for a disdrometer breadboard which uses Mie scattering and incoherent optical correlation for in situ measurement of drop size distribution in a cloud chamber

    Spectral properties of the 2D Holstein polaron

    Full text link
    The two-dimensional Holstein model is studied by means of direct Lanczos diagonalization preserving the full dynamics and quantum nature of phonons. We present numerical exact results for the single-particle spectral function, the polaronic quasiparticle weight, and the optical conductivity. The polaron band dispersion is derived both from exact diagonalization of small lattices and analytic calculation of the polaron self-energy.Comment: 8 pages, revtex, 6 figure

    Carrier-density effects in many-polaron systems

    Full text link
    Many-polaron systems with finite charge-carrier density are often encountered experimentally. However, until recently, no satisfactory theoretical description of these systems was available even in the framework of simple models such as the one-dimensional spinless Holstein model considered here. In this work, previous results obtained using numerical as well as analytical approaches are reviewed from a unified perspective, focussing on spectral properties which reveal the nature of the quasiparticles in the system. In the adiabatic regime and for intermediate electron-phonon coupling, a carrier-density driven crossover from a polaronic to a rather metallic system takes place. Further insight into the effects due to changes in density is gained by calculating the phonon spectral function, and the fermion-fermion and fermion-lattice correlation functions. Finally, we provide strong evidence against the possibility of phase separation.Comment: 13 pages, 6 figures, accepted for publication in J. Phys.: Condens. Matter; final versio

    On the stability of polaronic superlattices in strongly coupled electron-phonon systems

    Full text link
    We investigate the interplay of electron-phonon (EP) coupling and strong electronic correlations in the frame of the two-dimensional (2D) Holstein t-J model (HtJM), focusing on polaronic ordering phenomena for the quarter-filled band case. The use of direct Lanczos diagonalization on finite lattices allows us to include the effects of quantum phonon fluctuations in the calculation of spin/charge structure factors and hole-phonon correlation functions. In the adiabatic strong coupling regime we found evidence for ``self-localization'' of polaronic carriers in a (π,π)(\pi,\pi) charge-modulated structure, a type of superlattice solidification reminiscent of those observed in the nickel perovskites La2xSrxNiO4+yLa_{2-x}Sr_{x}NiO_{4+y}.Comment: 2 pages, Latex. Submitted to Physica C, Proc. Int. Conf. on M2HTSC

    Optical conductivity of polaronic charge carriers

    Full text link
    The optical conductivity of charge carriers coupled to quantum phonons is studied in the framework of the one-dimensional spinless Holstein model. For one electron, variational diagonalisation yields exact results in the thermodynamic limit, whereas at finite carrier density analytical approximations based on previous work on single-particle spectral functions are obtained. Particular emphasis is put on deviations from weak-coupling, small-polaron or one-electron theories occurring at intermediate coupling and/or finite carrier density. The analytical results are in surprisingly good agreement with exact data, and exhibit the characteristic polaronic excitations observed in experiments on manganites.Comment: 23 pages, 11 figure

    Phonon-affected steady-state transport through molecular quantum dots

    Full text link
    We consider transport through a vibrating molecular quantum dot contacted to macroscopic leads acting as charge reservoirs. In the equilibrium and nonequilibrium regime, we study the formation of a polaron-like transient state at the quantum dot for all ratios of the dot-lead coupling to the energy of the local phonon mode. We show that the polaronic renormalization of the dot-lead coupling is a possible mechanism for negative differential conductance. Moreover, the effective dot level follows one of the lead chemical potentials to enhance resonant transport, causing novel features in the inelastic tunneling signal. In the linear response regime, we investigate the impact of the electron-phonon interaction on the thermoelectrical properties of the quantum dot device.Comment: 11 pages, 7 figures, FQMT11 Proceeding

    Weighted Bergman kernels and virtual Bergman kernels

    Full text link
    We introduce the notion of "virtual Bergman kernel" and apply it to the computation of the Bergman kernel of "domains inflated by Hermitian balls", in particular when the base domain is a bounded symmetric domain.Comment: 12 pages. One-hour lecture for graduate students, SCV 2004, August 2004, Beijing, P.R. China. V2: typo correcte

    Selective breeding for variations in patterns of mystacial vibrissae of mice: Bilaterally symmetrical strains derived from ICR stock

    Get PDF
    The establishment of certain patterns of mystacial vibrlssae in mice has been the aim of an extensive breeding program carried on in this laboratory since 1977. In a companion paper we have reported on variations in this pattern in an outbred population of ICR mice. Starting with 21 ICR animals we bred, mostly by brother-sister mating, for 13 bilaterally symmetric patterns of mystacial vibrlssae characterized by the presence (or absence) of supernumerary whiskers (SWs). The strains are classified as follows: I, a mouse strain with the standard pattern; II, eight strains bred for the occurrence of SWs at a given site or sites; and III, four mouse strains bred for a maximal number of SWs in different regions of the whiskerpad. Commonly, SWs occur in regions that coincide with the zones of mergence between the three facial processes except for two class II strains in which we bred for SWs in the "straddler” row of vibrissae, and for one class III strain, In which we cultivated the tendency (that appeared late in our program) to have SWs at the crest of a facial process. For classes I and II we analyzed the results for about 18 generations in terms of "Improvement,” meaning an increase in the percentages of animals with the desired phenotype together with a decreased frequency of undesired SWs. For class III, success in breeding meant the increase of the mean number of the desired SWs. All results led to the same conclusion: there is a genetic basis for the occurrence of SWs. The side preference of a particular SW is not strain dependent. It disappears in those class I and II strains in which almost 100% of animals obtained the desired phenotype. The increase in number of SWs in one zone of mergence does not depend on the presence of SWs in the other. Where tested, we almost always found a representation of an SW in a topologically equivalent location within the "barrelfield” area of the somatosensory cerebral cortex. Except for some diseases early in the breeding program, and some side effects of inbreeding that were eliminated, the population was without obvious defects. Where tested, there was no correlation between the occurrence of SWs and sex. The observed variations in pattern of mystacial vibrlssae and their genetic background led us to propose a morphogenetic model for the formation of the pattern of mystacial vibrlssa

    Invariance of the correlation energy at high density and large dimension in two-electron systems

    Full text link
    We prove that, in the large-dimension limit, the high-density correlation energy \Ec of two opposite-spin electrons confined in a DD-dimensional space and interacting {\em via} a Coulomb potential is given by \Ec \sim -1/(8D^2) for any radial confining potential V(r)V(r). This result explains the observed similarity of \Ec in a variety of two-electron systems in three-dimensional space.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let
    corecore