Many-polaron systems with finite charge-carrier density are often encountered
experimentally. However, until recently, no satisfactory theoretical
description of these systems was available even in the framework of simple
models such as the one-dimensional spinless Holstein model considered here. In
this work, previous results obtained using numerical as well as analytical
approaches are reviewed from a unified perspective, focussing on spectral
properties which reveal the nature of the quasiparticles in the system. In the
adiabatic regime and for intermediate electron-phonon coupling, a
carrier-density driven crossover from a polaronic to a rather metallic system
takes place. Further insight into the effects due to changes in density is
gained by calculating the phonon spectral function, and the fermion-fermion and
fermion-lattice correlation functions. Finally, we provide strong evidence
against the possibility of phase separation.Comment: 13 pages, 6 figures, accepted for publication in J. Phys.: Condens.
Matter; final versio