18 research outputs found

    Xist and Tsix Transcription Dynamics Is Regulated by the X-to-Autosome Ratio and Semistable Transcriptional States

    Get PDF
    In female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between X-linked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist. Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation. Our results revealed mutually antagonistic roles for Tsix on Xist and vice versa and indicate the presence of semistable transcriptional states of the Xic locus predicting the outcome of XCI. These transcriptional states are instructed by the X-to-autosome ratio, directed by regulators of XCI, and can be modulated by tissue culture conditions

    Distant agricultural landscapes

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The final publication is available at Springer via http://dx.doi.org/10.1007/s11625-014-0278-0This paper examines the relationship between the development of the dominant industrial food system and its associated global economic drivers and the environmental sustainability of agricultural landscapes. It makes the case that the growth of the global industrial food system has encouraged increasingly complex forms of “distance” that separate food both geographically and mentally from the landscapes on which it was produced. This separation between food and its originating landscape poses challenges for the ability of more localized agricultural sustainability initiatives to address some of the broader problems in the global food system. In particular, distance enables certain powerful actors to externalize ecological and social costs, which in turn makes it difficult to link specific global actors to particular biophysical and social impacts felt on local agricultural landscapes. Feedback mechanisms that normally would provide pressure for improved agricultural sustainability are weak because there is a lack of clarity regarding responsibility for outcomes. The paper provides a brief illustration of these dynamics with a closer look at increased financialization in the food system. It shows that new forms of distancing are encouraged by the growing significance of financial markets in global agrifood value chains. This dynamic has a substantial impact on food system outcomes and ultimately complicates efforts to scale up small-scale local agricultural models that are more sustainable.The Trudeau Foundation || Social Sciences and Humanities Research Council of Canad

    The Trans-Activator RNF12 and Cis-Acting Elements Effectuate X Chromosome Inactivation Independent of X-Pairing

    No full text
    X chromosome inactivation (XCI) in female placental mammals is a vital mechanism for dosage compensation between X-linked and autosomal genes. XCI starts with activation of Xist and silencing of the negative regulator Tsix, followed by cis spreading of Xist RNA over the future inactive X chromosome (Xi). Here, we show that XCI does not require physical contact between the two X chromosomes (X-pairing) but is regulated by trans-acting diffusible factors. We found that the X-encoded trans-acting and dose-dependent XCI-activator RNF12 acts in concert with the cis-regulatory region containing Jpx, Ftx, and Xpr to activate Xist and to overcome repression by Tsix. RNF12 acts at two subsequent steps; two active copies of Rnf12 drive initiation of XCI, and one copy needs to remain active to maintain XCI toward establishment of the Xi. This two-step mechanism ensures that XCI is very robust and fine-tuned, preventing XCI of both X chromosomes
    corecore