178 research outputs found

    Bird radar validation in the field by time-referencing line-transect surveys

    Get PDF
    Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar’s detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer’s accuracy in determining a bird’s transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ∼1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50±0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms

    Sensor properties of a robust giant magnetoresistance material system at elevated temperatures

    Get PDF
    The temperature dependence of the giant magnetoresistance (GMR) ratio, resistance and exchange-biasing field for a spin valve comprising an Ir19Mn81-biased artificial antiferromagnet (AAF) has been studied up to 325 °C. Up to 200–250 °C the temperature effects are reversible, at higher temperatures gradual irreversible changes are observed, probably due to atomic diffusion. The magnetoresistance effect is even at 200 °C still higher than for anisotropic magnetoresistance sensors at room temperature. The resistance of the multilayer shows a maximum around 250 °C. We found that this is due to the peculiar behavior of Ir–Mn, which has a negative temperature coefficient of the resistance. This provides a possibility to tune the temperature coefficient for the complete multilayer by varying the thickness of the Ir–Mn layer. The relative decrease of the exchange-biasing field as a function of temperature is much smaller for spin valves with AAF than for conventional spin valves (without AAF). Furthermore, it was demonstrated that the GMR ratio can be increased to 12% at room temperature by using a dual spin valve with two AAFs. ©2000 American Institute of Physics

    Cytoskeletal dynamics of Cytotoxic T cells during migration in the tumour microenvironment

    Get PDF
    Typically, migrating T cells display an elongated polarized shape with a very dynamic leading edge and a uropod in the rear. This ‘amoeboid’ movement guarantees a fast migration driven by the formation of polarized protrusions at the front. The actomyosin cytoskeleton is responsible for the generation of the forces that are involved in this process. This thesis aims to determine what is the effect of T cell migration when different components of the actomyosin cortex were inhibited using a pharmacological approach. We found that the inhibition of each component of the actomyosin cortex, T cells display different conformation of the actin filaments and produce different type of protrusion. Furthermore, T cell migration is an important feature for the killing and clearance of canner cells. It has been reported that T cells can migrate efficiently in any kind of tissue whilst scanning for cognate antigen. On the other hand, it is known that the tumor microenvironment secretes immunosuppressive cytokines such as TGF-β impairing the antitumor activity of T cells. Therefore, we aim to determine how TGF-β affects the migration behavior of T cells and its consequences in the scanning strategy to search their cognate antigen

    The cumulation of ill health and low agency in socially excluded city dwellers in the Netherlands: how to better identify high-risk/high-need population segments with public health survey data

    Get PDF
    Background: Population segmentation and risk stratification are important strategies for allocating resources in public health, health care and social care. Social exclusion, which is defined as the cumulation of disadvantages in social, economic, cultural and political domains, is associated with an increased risk of health problems, low agency, and as a consequence, a higher need for health and social care. The aim of this study is to test social exclusion against traditional social stratifiers to identify high-risk/high-need population segments.Methods: We used data from 33,285 adults from the 2016 Public Health Monitor of four major cities in the Netherlands. To identify at-risk populations for cardiovascular risk, cancer, low self-rated health, anxiety and depression symptoms, and low personal control, we compared relative risks (RR) and population attributable fractions (PAF) for social exclusion, which was measured with the Social Exclusion Index for Health Surveys (SEI-HS), and four traditional social stratifiers, namely, education, income, labour market position and migration background.Results: The analyses showed significant associations of social exclusion with all the health indicators and personal control. Particular strong RRs were found for anxiety and depression symptoms (7.95) and low personal control (6.36), with corresponding PAFs of 42 and 35%, respectively. Social exclusion was significantly better at identifying population segments with high anxiety and depression symptoms and low personal control than were the four traditional stratifiers, while the two approaches were similar at identifying other health problems. The combination of social exclusion with a low labour market position (19.5% of the adult population) captured 67% of the prevalence of anxiety and depression symptoms and 60% of the prevalence of low personal control, as well as substantial proportions of the other health indicators.Conclusions: This study shows that the SEI-HS is a powerful tool for identifying high-risk/high-need population segments in which not only ill health is concentrated, as is the case with traditional social stratifiers, but also a high prevalence of anxiety and depression symptoms and low personal control are present, in addition to an accumulation of social problems. These findings have implications for health care practice, public health and social interventions in large cities.Stress-related psychiatric disorders across the life spa

    Bird Radar Validation in the Field by Time-Referencing Line-Transect Surveys

    Get PDF
    Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar’s detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer’s accuracy in determining a bird’s transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ~1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50±0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms

    Barriers and facilitators perceived by physicians when using prediction models in practice

    Get PDF
    Objectives Prediction models may facilitate risk-based management of health care conditions. In a large cluster-randomized trial, presenting calculated risks of postoperative nausea and vomiting (PONV) to physicians (assistive approach) increased risk-based management of PONV. This increase did not improve patient outcome - that is, PONV incidence. This prompted us to explore how prediction tools guide the decision-making process of physicians. Study Design and Setting Using mixed methods, we interviewed eight physicians to understand how predicted risks were perceived by the physicians and how they influenced decision making. Subsequently, all 57 physicians of the trial were surveyed for how the presented risks influenced their perceptions. Results Although the prediction tool made physicians more aware of PONV prevention, the physicians reported three barriers to use predicted risks in their decision making. PONV was not considered an outcome of utmost importance; decision making on PONV prophylaxis was mostly intuitive rather than risk based; prediction models do not weigh benefits and risks of prophylactic drugs. Conclusion Combining probabilistic output of the model with their clinical experience may be difficult for physicians, especially when their decision-making process is mostly intuitive. Adding recommendations to predicted risks (directive approach) was considered an important step to facilitate the uptake of a prediction tool
    • …
    corecore