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Abstract
A common problem with observational datasets is that not all events of interest may 
be detected. For example, observing animals in the wild can difficult when animals 
move, hide, or cannot be closely approached. We consider time series of events re-
corded in conditions where events are occasionally missed by observers or observa-
tional devices. These time series are not restricted to behavioral protocols, but can be 
any cyclic or recurring process where discrete outcomes are observed. Undetected 
events cause biased inferences on the process of interest, and statistical analyses are 
needed that can identify and correct the compromised detection processes. Missed 
observations in time series lead to observed time intervals between events at multi-
ples of the true inter-event time, which conveys information on their detection prob-
ability. We derive the theoretical probability density function for observed intervals 
between events that includes a probability of missed detection. Methodology and 
software tools are provided for analysis of event data with potential observation bias 
and its removal. The methodology was applied to simulation data and a case study of 
defecation rate estimation in geese, which is commonly used to estimate their diges-
tive throughput and energetic uptake, or to calculate goose usage of a feeding site 
from dropping density. Simulations indicate that at a moderate chance to miss arrival 
events (p = 0.3), uncorrected arrival intervals were biased upward by up to a factor 3, 
while parameter values corrected for missed observations were within 1% of their true 
simulated value. A field case study shows that not accounting for missed observations 
leads to substantial underestimates of the true defecation rate in geese, and spurious 
rate differences between sites, which are introduced by differences in observational 
conditions. These results show that the derived methodology can be used to effec-
tively remove observational biases in time-ordered event data.

K E Y W O R D S

fecal output, interval time series, missing data, mixture model, observation protocol, probability 
of detection

1  | INTRODUCTION

A common problem with observational data is that records may be 
incomplete and conditional on the observation process. For example, 

count data underlying population size estimates (Buckland et al., 2001; 
Royle, 2004), animal distributions (Fink et al., 2010), or extinction re-
cords (Solow, 2005) may be sparse and unevenly distributed in space 
and time, requiring statistical analyses that correct for observer effort. 
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Incomplete data may also result from compromised detections during 
the observation process itself (Elphick, 2008). Auditory detections 
may depend on the level of ambient noise (Simons, Alldredge, Pollock, 
& Wettroth, 2007) or observer skill (Kendall, Peterjohn, & Sauer, 
1996), and visual detections may be compromised because organisms 
move out of view, hide, or avoid the observer, causing events of inter-
est to remain occasionally unobserved without the observer realizing. 
Similarly, technology to record event data like accelerometers on GPS 
tags may not be continuously operational (Shamoun-Baranes et al., 
2012), for example, for considerations of energy or memory consump-
tion, leading to missing observations during down-time. Correction for 
missingness in data due to a compromised detection process is the 
topic of this study.

Observations in ecology often consist of simple counts of events 
and their timing (Altmann, 1974). Estimating time-to-event in a time 
series with missing values may be relevant in any process with ob-
servations of recurring discrete events. This type of data is com-
mon in behavioral protocols collected by field observers or devices, 
such as observations of diving intervals in birds or mammals (Nolet, 
Wansink, & Kruuk, 1993; Wilson, Pütz, Charrassin, & Lage, 1995), re-
cordings of vigilance bouts or scanning frequency in socially foraging 
animals (Hirschler, Gedert, Majors, Townsend, & Hoogland, 2016), 
observations of animal defecation events (Owen, 1971; Ydenberg & 
Prins, 1981), nest visit rates (Lendvai et al., 2015), or data on prey 
captures. Estimating time-to-event data with missing observations 
plays a role not only in behavioral protocols, but in any cyclic or recur-
ring process where discrete outcomes are observed, such as peaks in 
environmental or animal cycles (Sinclair et al., 1993), tree-ring obser-
vations (Bradley, 2011), or cyclic sedimentation (Brandon, Woodruff, 
Donnelly, & Sullivan, 2014).

In this study, we focus on count data that is ordered in time se-
ries, as typically the case in behavioral protocols. We will derive how 
repeated event observations on individuals may be used to correct for 
missed detections, using a statistical framework based on a newly de-
rived probability density function (pdf) of observed intervals that con-
tains explicit components to account for intervals containing a missed 
observation. The method is made available in the R-package intRvals. 
We will demonstrate the utility of the method and the package in a 
case study that deals with estimating defecation rates of animals in 
the wild, as well in a simulation study. While the authors have used the 
method to deal with defecation rate estimation in geese, the frame-
work is general to any observational process that aims to estimate and 
compare the mean and variance of occurrence rates in time series of 
distinct events while correcting for missed detections, either by de-
vices or human observers.

In wildlife studies, defecation rate estimates are widely used to 
assess their food harvest rate, food assimilation, and energy bud-
geting across different habitats and diets (Besiktepe & Dam, 2002), 
or to calculate usage of feeding sites from dropping density (Owen, 
1971). As bites and bite sizes are difficult to observe directly, fecal 
output is a much more accurate measure of food intake, which can be 
calculated as the product of average dropping mass and defecation 
rate. In the case of grazing waterfowl, a widely used field protocol for 

assessing the defecation rate has been the “direct interval method,” 
in which arrival times of successive defecations are recorded in the 
same individual (Owen, 1971; Ydenberg & Prins, 1981); however, 
this method does not account for the possibility of missed obser-
vations. We will highlight in a case study how our method can be an 
improvement when observational conditions are challenging and the 
probability of missed defecation observations cannot be assumed to 
be zero.

1.1 | Probability density function of an observed 
interval distribution

We define an arrival as a distinct event that can be observed or re-
corded on an organism, which may be a behavior, activity, or physical 
state that is short in duration, therefore to which a distinct time stamp 
can be assigned. Observers (or devices) are assumed to record arrival 
times, and from those inter-arrival times or intervals can be calculated, 
as illustrated in Figure 1. We further assume that arrivals occur at a 
certain average stationary rate, equaling the average number of arriv-
als per unit of time. Our goal is to estimate the mean inter-arrival time 
and its standard deviation, in situations where a certain proportion of 
arrivals will not be observed. In the case that arrivals are fully stochas-
tically independent, we are dealing with a Poisson process, for which 
the inter-arrival times are exponentially distributed (Tijms, 2003). In 
many cases, however, events occur at a specific rate, such that the 
time between arrivals varies around a mean μ, as in xt = μ + εt with 
εt white noise with a certain fixed variance. In this case, the arrival 
process is no longer a Poisson but rather an autoregressive process or 
AR(0) process, where the inter-arrival times are assumed to follow a 
normal distribution (Manly, 2009).

F I G U R E   1 Example probability density function 
φobs

(
x|μ = 200, σ = 40, p = 0.5, f = 0.2

)
 for an observed interval 

distribution and its components. The area under each curve (shaded 
in gray for the fundamental component) equals (1 − f)*πi, with πi given 
by equation (2), and f for the (optional) exponential Poisson process 
component. The length of the bars at the top of the figure indicate 
the true and observed interval lengths, where the gray number in the 
bars indicates the number of consecutively missed arrivals i 
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A real-life example of such a process is defecation rates by animals. 
After a defecation, it takes time before new feces accumulates in the 
rectum, after which it will defecate again. As a result, the arrivals of a 
subsequent defecations are not random in time but interrelated, with 
the inter-arrival time depending on the rate of fecal throughput in the 
intestines.

1.2 | Interval data and the gamma distribution

A useful distribution to model inter-arrival times, x, is the Gamma dis-
tribution with probability density function (pdf) φΓ

true
(x|μ,σ), given by:

with μ the mean, σ the standard deviation, Γ the gamma function, 
and x the time interval between subsequent arrivals. When μ ≫ σ 
the limiting distribution of the gamma distribution is the stand-
ard normal distribution with pdf φN

true
(x|μ, σ)∼

(
μ, σ2

)
, and when 

μ ≈ σ the limiting distribution is the exponential distribution with pdf 
φ
e

true
(x|μ) = φ

Γ

true
(x|μ,μ) = e−x∕μ∕μ. This property makes the Gamma 

distribution suited to model a wide range of arrival processes: It spans 
the range of random Poisson’s processes (the limit of exponentially 
distributed arrival intervals) to autoregressive processes (the limit of 
normally distributed arrival intervals).

1.3 | A probability density function for 
observed intervals

The theoretical probability density function φobs of observed arrival 
intervals in a scenario where the chance to miss an arrival is nonzero, 
will be a superposition of multiple components referring to different 
sets of observed intervals, separated by the number of missed arriv-
als they contain, as illustrated in Figure 1. The component for the in-
terval set containing no missed arrivals will have a total cumulative 
probability of (1 − p), with p the probability to miss an arrival. Of the 
proportion p of true arrivals missed once, again in fraction p of the 
cases a subsequent arrival will be missed for a second time, that is, in 
a fraction p*p of the cases. The set containing one missed arrival will 
therefore have a total cumulative probability of (p − p2). In general, 
the component πi of the pdf referring to interval sets with i missed 
consecutive arrivals thus equals

One may easily verify that the sum of the cumulative density of all 
components of the observed pdf 

∑∞

i=0
πi=1 for any value p between 0 

and 1, as required for a pdf.
The expected value of the interval set without missing intervals, 

E
(
π0

)
, equals μ. From this follows that for the sets with missing intervals 

E
(
πi

)
 = 

(
i +1

)
μ. The width of component i will be broadened relative 

to the fundamental, as it results from the addition of (i + 1) intervals, 
each with associated standard deviation. The width of component 

i can thus be calculated by standard uncertainty propagation in the 
case of addition, such that we may write for the observed probability 
density function φobs

Equation (3) is mathematically analogous to a mixture model 
(Bishop, 2006), with mixture components φΓ

true
 and mixing coefficients 

πi. Conventional mixture models aim to estimate the means, variances, 
and mixture coefficients for typically an unknown but finite number 
of components. Equation (3) differs primarily from the conventional 
mixture model by the constraining relations that exist between the 
means, variances, and magnitudes of the mixing coefficients of each 
the components, as well by the infinite instead of finite number of 
components.

We can add to the pdf of equation (3) a distinction between 
within-subject and total variation (σw, σ, respectively), which is mean-
ingful in a limit where σw < σ. This inequality also implies σw < μ as the 
lower limit for σ is given by random processes in which μ ≈ σ. When 
within-subject variation is distinguishable, the pdf φobs

(
x|μ, σwithin, p

)
 

will tend to an autoregressive process, that is, a sum of normal distrib-
uted terms, which is easily convoluted with a normal distribution to 
account for between-subject variation. The pdf for all subjects com-
bined thus becomes

with σ=
√

σ2
w
+ σ

2

b
. One may verify that when σ = σw (σb = 0), equa-

tion (3) is recovered as required.

1.4 | Accounting for stochastic 
background processes

It is conceivable that, superimposed on an autoregressive pro-
cess, a fraction of events is triggered by an additional stochastic 
process. We will refer again to animal defecation for an example. 
Herbivorous waterfowl like geese are known to defecate at an inter-
val related to their rate of digestive throughput, and typically have 
defecation intervals with μ > σ (Bédard & Gauthier, 1986; Prop, 
Van Marken Lichtenbelt, Beekman, & Faber, 2005). Nonetheless, 
random events can trigger defecations, for example, disturbances, 
take-off into flight, or aggressive interactions, which tend to be ac-
companied with defecation events (own unpublished observations 
by the authors). Generally, steady-state behaviors or activities of 
animals always have a chance of being interrupted, for example, by 
interactions with competitors, predators, or by fluctuations in their 
abiotic environment, which makes it important to account for such 
randomness.

When these background stochastic arrivals are random in time 
(i.e., a Poisson process), they will produce an exponential interval 
distribution. For this subset of random arrivals, short intervals near 

(1)

Gamma(x|a,s) = 1

Γ (a)
s
−a
x
a−1

e
−

x

s

φ
Γ

true
(x|μ, σ)∼Gamma

(
x|μ2∕σ2, σ2∕μ

)

(2)πi = p
i
−p

i + 1

(3)
φobs (x�μ, σ, p) =

∞∑
i = 0

φobs (x, i�μ, σ, p)

φobs (x, i�μ, σ, p) = πi φ
Γ

true

�
x�
�
i +1

�
μ,
√
i +1σ

�

(4)
φobs

(
x|μ, σ, σw, p

)
=

∞∑

i = 0

πi φ
Γ

true

(
x|
(
i +1

)
μ,

√
iσ2

w
+ σ2

)
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zero are the most common by nature of the exponential distribution 
(Tijms, 2003). However, for a main arrival process having μ > σ, the 
probability of short observed intervals is very low in eq. (3), and any 
observed interval near zero will effectively behave as a major outlier 
to the theoretical distribution. In these cases, it is important to accom-
modate these outliers in a pdf that describes a mixture process that 
includes a small fraction f of random arrivals (with an observed expo-
nential distribution φobs (x|μ,μ,p); note that φobs represents a gamma 
distribution which simplifies to an exponential distribution if μ = σ): 

As a boundary condition, we will assume that the random back-
ground component has the same mean interval length as the main 
component, such that the mean interval length remains identical to 
equation (3). The biological interpretation of this assumption is that 
the infrequent stochastic interruptions of the animal’s behavior of in-
terest do not change the long-term average rate of the behavior main-
tained by the animal.

2  | METHODS

2.1 | Maximum-likelihood estimation and model 
comparison

For a set of {xj} observed intervals, we calculated a log-likelihood 

which can be maximized with respect (μ, σ, p, f) using standard numer-
ical procedures, producing an estimate of these parameters. Mixture 
models are usually estimated by the iterative expectation maximiza-
tion (EM) algorithm (Bishop, 2006; Dempster, Laird, & Rubin, 1977), 
in which the mixture coefficients are considered unobserved latent 
variables that are estimated in a step (expectation- or E-step) that is 
separate from the estimation of the main model parameters (maximi-
zation- or M-step). Our model is essentially a mixture model with ad-
ditional constraints on the relative values of the mixture coefficients 
and their means and variances. To the authors knowledge, current 
statistical packages for estimating mixture models (e.g., mixtools 
(Benaglia, Chauveau, Hunter, & Young, 2009) or FlexMix (Leisch, 
2004)) do not allow specification of such constraints on both the mix-
ture coefficients and model parameters, a restriction that is lifted in 
our new package intRvals (but see normalmixMMIc in R-package mix-
tools for specification of linear constraints on means and variances 
in normal mixture models, (Benaglia et al., 2009)). The EM algorithm 
is particularly efficient for normal mixtures, as in this case, analyti-
cal solutions exist for the M-step. Maximum-likelihood estimators for 
the Gamma distribution, however, do not have a closed form (Choi 
& Wette, 1969), and its estimation already relies on gradient-based 
methods. Because our pdf contains Gamma distributions by default, 
we did not implement an EM algorithm for maximizing equation (6) 
and use gradient-based methods directly instead. Because model pa-
rameters f and p are constrained between 0 and 1, we introduced a bi-
nomial link function in the maximum-likelihood estimator to constrain 

their value to this domain. We found the estimator to converge reli-
ably and quickly, likely because the additional constraints greatly re-
duce the number of free parameters relative to conventional mixture 
models.

To compare the means and variance of two populations, we can 
use the optimized mean m and standard deviation s in a standard 
Student’s t test and F test, respectively. Although the model parame-
ters are estimated using Gamma distributions and the tests are derived 
under assumptions of normality, both tests are known to be still robust 
(Grice & Bain, 1980). Only when sample sizes are very small and the 
gamma distribution’s shape parameter is small (μ ~ σ), the tests may be 
less appropriate (Shiue, Bain, & Engelhardt, 1988; Tripathi, Gupta, & 
Pair, 1993). When a random background Poisson process fraction f is 
included to allow for interval lengths near zero, we reduced the effec-
tive degrees of freedom in the tests by the same factor f. To compare 
model fits on the same population, we use a likelihood ratio test based 
on calculated deviance values. As our candidate models are nested, 
we may apply Wilks’ theorem (Wilks, 1938) and assume the deviance 
has an approximate χ2 distribution with degrees of freedom Δnparam 
(the difference in the number of optimized free parameters between 
two models). In practice, pdf values will be numerically identical when 
the infinite sum in equation (6) is capped at a finite integer, that is, in 
our numerical case studies, we ran the sum up to i = 5. The pdf was 
truncated and renormalized at the approximately mean observation 
bout length, equal to 15 min.

We note that package intRvals contains deviance tests for compar-
ing different competing interval models that may be fitted on the same 
interval data set, for example, to compare the assumption of gamma-
distributed intervals versus normal distributed intervals (i.e., replacing 
φ
Γ

true
 with φN

true
 in eq. (4)), or to test the validity of the capping of the 

sum in equation (6).

2.2 | Partitioning within- and between-subject  
variation

Given a model fit, by equation (3), we have the decomposition of 
the likelihood of an interval observation into partial likelihoods 
φobs (x, i|μ, σ, p), that is, each of the components illustrated in Figure 1. 
If the amplitude of partial likelihood φobs

(
x, i = 0|μ, σ, p

)
 is at least a 

proportion 0.9 of the sum of all terms 
∑

i
φobs (x, i�μ, σ, p), an interval 

x is considered to be fundamental (not containing a missed event ob-
servation). In other words, fundamental intervals were selected at a 
0.9 confidence level. Within- and between-subject variation was es-
timated on the subset of fundamental intervals only. The value of 0.9 
was chosen as compromise between selecting fundamental intervals 
only, but also retaining sufficient intervals as fundamental for a post 
hoc analysis. There is ambiguity in its precise choice, and we note that 
it is good practice to not have inferences rely critically on its value. 
We fit equation (4) with an initial guess for σw, select the subset of 
fundamental intervals, and update the value σw by estimating it on this 
subset. Equation (4) is fitted with iteratively updated σw until reaching 
convergence. We calculate σw = swnind∕

(
nind + 1

)
 with sw the uncor-

rected sample standard deviation of within-subject centered values 

(5)φobs (x|μ, σ, p, f) =
(
1 − f

)
⋅φobs (x|μ, σ, p) + f ⋅φobs (x|μ, μ, p)

(6)
(
μ, σ, p, f|

{
xj
})

=

∑

j

logφobs

(
xj|μ, σ, p, f

)
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(obtained from subtracting the subject’s mean value from each ob-
servation value), and nind∕

(
nind+1

)
 Bessel’s correction (Heinz, 2011) 

with nind the average number of repeated measures per subject. 
Significance of within-subject variation was determined by testing for 
a random effect of subject against a constant null model (van de Pol 
& Wright, 2009), using the R-package lme4 (Bates, Mächler, Bolker, & 
Walker, 2015).

All methodology has been integrated into R-package “intRvals,” to 
be downloaded from CRAN (cran.r-project.org) or Github (github.com/
adokter/intRvals). This package can be used to test for the presence 
of observer effects, fit interval distribution models of both the Gamma 
and Normal family, convert interval parameters into rate parameters, 
and test for differences in means and variances in arrival intervals.

3  | RESULTS

3.1 | Simulation

We simulated observed intervals for a case with only within-subject 
variation (σw = σ), one case with primarily between-subject varia-
tion (σw = 4σ/5) and one case with primarily within-subject variation 
(σw = σ/5), when there is a moderate chance to miss arrival events 
(p = 0.3). Simulated and retrieved parameters are given in Table 1. 
Retrieved parameter values that were corrected for missed observa-
tions are within 1% of their true simulated value, whereas uncorrected 
means and standard deviations are much higher than the simulated val-
ues. These uncorrected parameter estimates were biased upward by a 
factor 1.3–3 by the intervals containing one or more missed arrivals.

3.2 | Case study: estimating defecation rates 
in geese

Figure 2 shows distributions of recorded defecation intervals for dark-
bellied brent geese (Branta bernicla bernicla) at two different sites, a 

natural saltmarsh (top, site 1) and agricultural grassland (bottom, site 
2). Observers also recorded the time when they had no clear view on 
the birds’ abdomen, which was a fraction of 0.15 of the total time for 
pasture versus 0.33 for saltmarsh, reflecting the difficult observational 
conditions at the saltmarsh.

We fitted different interval models, as summarized in Table 2. 
Models including a nonzero missed event probability p outperformed 
models that did not, and also inclusion of a random Poisson process 
background (parameter f) was significant on the saltmarsh site. The 
best models were used for subsequent comparisons of interval length 
and standard deviation between sites, as summarized in Table 3. The 
sample mean and standard deviation of the uncorrected observed in-
tervals were much larger than the modeled interval mean and standard 
deviation. Like in the simulations, their values were biased upwards by 
intervals containing one or more missed arrivals. The inferred missed 
event probability was higher at the saltmarsh site than at the pasture 
site (p = 0.27 vs. 0.14). These values are very close to the fraction of 
observation time that the bird’s abdomen was out of view (0.33 vs. 
0.15).

TABLE  1 Parameter retrieval for simulated interval data. In each 
simulation run, 100 interval observations were generated and 
parameters retrieved using equations (3) and (4)

param μ σ σwithin p

Simulated 250 50 – 0.3

Retrieved (eq. 3) 250 (6) 49 (4) – 0.30 (0.05)***

Uncorrected 336 (16) 158 (14) – –

Simulated 250 50 10 0.3

Retrieved (eq. 4) 256 (11) 56 (7) 13 (4)** 0.23 (0.04)***

Uncorrected 333 (17) 156 (15) 140 (16) –

Simulated 250 50 40 0.3

Retrieved (eq. 4) 252 (8) 52 (7) 36 (4) 0.25 (0.04)***

Uncorrected 336 (16) 159 (14) 148 (15) –

Means and standard deviations in brackets are given for retrieved param-
eters over 1000 runs. Significance for including a probability for missed 
detections (parameter p) and for separating within-group variance (σwithin) 
was tested with a likelihood ratio test against a null model without these 
terms (p values denoted by stars: *<.05, **<.01, ***<.001).

F IGURE  2 Observed defecation intervals for Brent Geese in 
May at two sites collected in a 2-week period, Schiermonnikoog 
(top, saltmarsh site) and Terschelling (bottom, pasture site). The solid 
curve is a fit of φobs (x|μ, σ, p, f) (see eq. 4) to the interval data. The 
probability to observe a defecation (1 − p) is higher at the pasture 
site
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4  | DISCUSSION

We have shown that interval distribution models that account for 
missed arrival observations can be used to remove biases in the means 
and variances of interval lengths (and their inverse, the means, and 
variances in event rates). Simulation results show that the models are 
robust in retrieving mean, between- and within-subject variances. 
Observer effects were adequately identified and corrected for under 
a moderate missed event probability p = 0.3, which shows that reliable 
event rates can be obtained even when observational conditions are 
challenging, or when data collection is interrupted.

In the defecation case study, the observational conditions were 
very different at the two sites. Not accounting for missed observa-
tions lead to spurious significant differences in means and variances 
between sites, related to differences in missed event probability p. 
The surface of saltmarshes showed considerable altitudinal variability, 
and the geese were weary and difficult to approach. Observational 
conditions were much better at the agricultural grassland site, where 
geese are accustomed to the presence of humans and can be easily 
approached and observed without obstructions from a high protective 
dike surrounding the island. The probability to miss defecation events 
p on the saltmarsh was therefore higher than on pasture.

The retrieved observation probabilities for the sites closely matched 
the time that abdomens were fully out of view, suggesting an ob-
structed view was the main reason for missed dropping observations. 
Accounting for missed observations improved absolute estimates of 
arrival rates, and prevented spurious results related to difference in ob-
servational circumstances. We found that the defecation intervals at the 
saltmarsh site only appeared longer due to missed defecation events. 
After correction, the differences between sites became much smaller 
and were no longer significant for the time periods considered here. 
Observation time was also used more efficiently, because intervals with 
missed observations still contribute to the parameter estimates in the 
model. The analysis further provides an unambiguous way of assigning 
intervals to the fundamental interval, and folding intervals back to their 
most likely fundamental interval when they contain a missed observa-
tion, functionality which is provided in the intRvals package.

Other methods for estimating interval rates than the “direct in-
terval method” have been proposed to estimate defecation rates. 
Hourly block counts of observed dropping excretions have been used, 
in which observation bouts of multiple individuals are used (Bédard 
& Gauthier, 1986), noting only the number of observed arrivals. The 
half-time interval method (Owen, 1971) aims to use observation time 
more efficiently, by only recording the time until the first defecation 
α per observation bout on an individual. Both methods do not record 
exact inter-arrival times, which are critical to our method; therefore, 
correction for missed arrivals is not possible when using these proto-
cols. We therefore advise against using these protocols in the field if 
there is a chance that droppings may be missed. It is typically difficult 
to determine in advance whether an observer effect of missed arrivals 
will be relevant or not. We therefore recommend collecting dropping 
intervals on single individuals, such that observer bias can be tested 
for using the presented methodology.

We note that in the design of field studies, it remains important 
to aim for observational conditions where the probability of missing 
events of interest p is as low as possible. When p gets large in com-
bination with a standard deviation σ approaching μ in magnitude in 
equation 3, the interval pdf gets a long tail. In this limit, a model that 
includes a parameter p will no longer find support in the data over a 
simpler gamma or exponential model without a parameter p, and the 
methodology breaks down.

Param

Retrieved Uncorrected

Saltmarsh Pasture Diff Saltmarsh Pasture Diff

μ 245 233 NS 341 269 ***

σ 53 54 NS 186 123 ***

σwithin 24 42 NS 176 113 ***

p 0.27 0.14 – – – –

f 0.20 0.05 – – – –

Not accounting for a nonzero missed event probability p leads to underestimates of the mean, overes-
timates of the variance, and spurious significant differences in means and variances between sites (p 
values for site comparison denoted by stars: *<.05, **<.01, ***<.001, NS > .05).

TABLE  3 Comparison of interval mean 
and standard deviation between sites 
(saltmarsh, n = 67, pasture n = 97 intervals)

TABLE  2 Comparison of interval models within sites

Site Model Loglik nparam ΔAIC Sign.

1 φobs (x|μ, σ, p, f) −430 4 0

1 φobs

(
x|μ, σ, 0, 0

)
−437 2 9 ***

1 φobs

(
x|μ, σ, p, 0

)
−436 3 10 ***

1 φobs

(
x|μ, σ, 0, f

)
−436 3 11 ***

2 φobs (x|μ, σ, p, f) −574 4 0

2 φobs

(
x|μ, σ, p, 0

)
−576 3 1 NS

2 φobs

(
x|μ, σ, 0, f

)
−583 3 16 ***

2 φobs

(
x|μ, σ, 0, 0

)
−586 2 20 ***

Models including both a missed event probability p and a random Poisson 
fraction f give the best fit (although inclusion of f was only significant at site 
1). The best model for each site was used for subsequent between site 
comparisons. Deviance tests are against the best model for each site (p 
values denoted by stars: *<.05, **<.01, ***<.001).
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The described interval analysis can be applied beyond the specific 
case of (geese) defecation to any kind of event history data, especially 
when inferring the mean and variation in event rates is of interest. 
Other applications may be observations of diving intervals in birds or 
mammals (Nolet et al., 1993; Wilson et al., 1995), recording vigilance 
bouts or scanning frequency in socially foraging animals (Hirschler 
et al., 2016), or determining prey capture rates in situations where 
prey captures are occasionally hidden from observers (cf. introduction 
for more examples). Missed detections also frequently occur in sensor 
data for which the sampling interval is limited (Wilson et al., 1995), 
which is the case in many bio-logger data and automated behavioral 
classifications based on accelerometers (Shamoun-Baranes et al., 
2012). In these cases, the missed event probability p may be known 
a priori from the sampling duration in the device settings and may be 
included as a fixed instead of a free parameter.

Being aware of the problem of missed detections is important 
in any study that relies on observational data to study behaviors or 
events that are of short duration and occur at low frequencies. Failure 
to detect missed detections can both lead to obscuring important vari-
ation in the behavior or process under study, or to spurious differences 
between habitats, groups of animals or social contexts that are in fact 
due to differences in observation circumstances.

4.1 | Supporting software

Accompanying this study, we developed the R-package “intRvals,” 
available at CRAN (cran.r-project.org) or Github (github.com/adokter/
intRvals), which contains all the tools to perform the analyses pre-
sented in this article.
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